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Abstract

This thesis investigates enhanced adversarial models for encryption, for scenarios where estab-

lished notions of security are not sufficient to accurately model the capabilities of real-world ad-

versaries. In particular we focus on achieving encryption schemes that are secure even when the

adversary has more power than granted by standard notions such as indistinguishability under

chosen-plaintext attack (IND-CPA). These extended models allow researchers, implementors and

end-users to confidently pinpoint areas of strength and weakness in cryptographic hardware and

software.

Our first contribution considers key-dependent message (KDM) security, meaning security

even when an adversary has access to encryptions of the decryption key. Our focus is the hybrid

encryption framework, a method for public key encryption that is widely deployed. We give

sufficient conditions for achieving KDM security for this paradigm in the random oracle model

using novel proof techniques, and cast known impossibility results in KDM security in the context

of hybrid encryption.

Next we investigate modelling an adversary that is yet more powerful: related-key-attack-

and-key-dependent message (RKA-KDM) security considers when an adversary has to access

encryptions, performed under related keys, of key-dependent messages. Our main result is a

composition theorem showing how to generically achieve RKA-KDM security. To indicate the

efficacy of our approach, we present a number of symmetric key instantiations that use known

KDM-secure public key encryption schemes as a starting point.
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CHAPTER 1

Introduction

Contents

1.1 Motivation and Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Motivation and Context

The recent and rapid computerisation of society has meant that cryptographic components are

playing an increasing role in how humans interact with each other and the machines we use for

our social lives and our work. These exciting developments bring with them a need for security

against a growing number of adversaries of varying power. Over time our understanding of

what it means for a cryptographic scheme1 to be secure has changed dramatically. This means

that we need to carefully consider what power an adversary against the scheme has, in a way

that accurately reflects reality. This thesis will focus on encryption schemes that are secure in

two strong adversarial models: the scenario when an adversary has access to encryptions of the

private keys of the scheme, and when the adversary can tamper a scheme to use a modified key.

Historical ciphers were often broken because there was no concept of what it meant for them

to be ‘secure’ in the first place: ad hoc techniques that appeared difficult for a few minds to break

were deployed and subsequently trivially broken. This idea of confidence in security stemming

from absence of attacks was rife until soon after the Second World War when Shannon [180]

introduced the one-time pad and information-theoretically secure (aka perfectly secure) cryptog-

raphy. This represents a fundamental gold standard for symmetric encryption. However for the

one-time pad to achieve information-theoretic security each key needs to be as long as each mes-

1In this thesis we will use schemes to mean both primitives (low-level constructs such as block ciphers, signature
algorithms and hash functions) and protocols (systems such as TLS and Kerberos that use primitives).
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1.1 Motivation and Context

sage: a system is not usable if it is impractical. This instigated the consideration of a trade-off

between security and efficiency, and precision in this context has been sought ever since.

Rigorous analysis of cryptography lay mainly in the purview of government agencies until

the 1970s, when Diffie and Hellman [103] and subsequently Rivest, Shamir and Adleman [174]

and Rabin [172] introduced novel methods for key exchange, public key encryption and digital

signatures that used properties of algebraic groups. This bridge between computer science and

mathematics encouraged many mathematicians to start working on open problems in commu-

nication that were, until that point, of little relation to theoretical mathematics. The work in this

thesis falls under the umbrella of provable security, a mathematical framework giving security def-

initions, and proofs relative to these definitions, for cryptographic primitives. The rigour that

is now associated with cryptography as a field has roots in both computer science and math-

ematics, and in particular the development of cryptographic primitives based on mathematical

hardness assumptions has rapidly enhanced our collective understanding of these problems. This

idea of practice-oriented provable security has allowed researchers with a preference for theoret-

ical topics to move cryptography from its fundamental roots in pseudorandom functions and

information theory to the study of widely-used schemes such as DES and RSA-OAEP, and larger

protocols.

Security definitions allow us to assess the strength of a cryptographic scheme, and thoroughly

analyse its resilience against adversaries. Definitions strictly define an adversary’s behaviour,

yielding elegant and precise results stating that schemes are secure with respect to the definition

for a class of adversaries. In many scenarios this class accurately reflects the realistic adversaries

that exist in the context of particular schemes, giving a clear indicator to implementors and users

of what security guarantees they can expect. Developing the ‘correct’ model is not easy and many

factors affect what should be taken into consideration, yet the desire for precision is unquestion-

able. For many years it appeared that IND-CPA, where a scheme is secure even in the presence

of an adversary that can access encryptions under the ‘live’ key, was regarded as the necessary

security level for encryption. The concept of chosen-ciphertext attacks, where the adversary can

additionally send elements of the ciphertext space and have them decrypted under the active

decryption key, was viewed by many as being too strong: for some implementors this was an

unrealistic attack scenario and deployed schemes would simply not be vulnerable to it. In 1998

Bleichenbacher [66] presented the first practical chosen-ciphertext attack, on the widely-deployed

SSL key establishment protocol that is based on RSA PKCS #1 v1.5.

2



1.1 Motivation and Context

The definitions of security in the presence of chosen-plaintext and chosen-ciphertext attacks

mentioned above are independent of the way a scheme is implemented; a scheme that is deemed

to be extremely secure by theoreticians may be trivially insecure when even a passive adversary

has access to side-channel information (such as observations of the power consumption of a de-

vice whilst it executes a cryptographic algorithm [145]). The proliferation of mass surveillance

has encouraged consideration of a new type of adversary vastly more powerful than those nor-

mally considered in the real world and in academic literature. This means that it is vital to regard

security proofs as a component in the wider analysis of a system, and with this full analysis im-

plementors can be aware of which adversaries pose the highest threats to the system.

Standard definitions of security for encryption (i.e. IND-CPA and IND-CCA) do not consider

how an adversary can physically tamper with the system or the types of queries that an adversary

can make, and this thesis will investigate these two facets. In some real-world scenarios it may

be possible for an adversary to modify an encryption, for example flipping bits of an AES key.

The theoretical study of this type of attack is known as related-key attack (RKA) security: in

this model we ask the adversary to submit a related-key deriving function ϕ from some function

class Φ and a message m, and then distinguish encryptions under ϕ(k) of either m or a random

element of the message space (for key k)—if no adversary can do this then the encryption scheme

is RKA secure with respect to the class Φ. In the case of symmetric encryption, if an adversary can

specify constant functions (i.e. removing the key from the encryption algorithm altogether) then

it will be able to trivially distinguish in the RKA security game. We wish to develop schemes

that are RKA secure with respect to rich and meaningful function classes, to best represent the

tampering attacks that can exist in the wild.

Key-Dependent Message (KDM) security approaches from another angle, asking whether a

scheme is secure even when an adversary has access to messages that depend on the decryption

key. In this framework an adversary submits a function ψ to its encryption oracle and receives

either an encryption of ψ(k) or an encryption of a random message of the same length, where k is

the decryption key of the system. This is intuitively a concern in hard disk encryption—we might

expect that a system will store (a representation of) the key encrypted under the key itself, and

the definition is additionally useful in formal security proofs and anonymous credential systems.

This thesis will give two main results: firstly a composition theorem showing how to con-

struct hybrid encryption that is KDM secure, and secondly the means to achieve security when

3



1.2 Publications

an adversary has both RKA and KDM capabilities at the same time. The first result states that if the

Key Encapsulation Mechanism (KEM)—used to transport a symmetric key—is OW-CCA secure,

the Data Encapsulation Mechanism (DEM)—that encrypts a message under the symmetric key

chosen by the KEM—is IND-CCA secure and the intermediary key derivation function is mod-

elled as a random oracle, then the resulting hybrid encryption scheme is IND-KDM-CCA secure.

We then show if a symmetric encryption scheme is KDM-CPA secure and if there exists an effi-

cient RKA transformer that produces encryptions under related keys without knowledge of the

underlying key, then the resulting SKE scheme is RKA-KDM secure. To demonstrate the utility of

this approach we give a number of instantiations of schemes that are secure in this model under

a number of hardness assumptions.

RKA and KDM security are just two of many adversarial models for encryption that model the

scenario where standard IND-CPA (or IND-CCA) security is not strong enough: others include

selective opening security [107, 41, 33] and leakage resilience [161, 108, 11]. The idea of leakage

resilient cryptography is to formally model the amount of information an adversary can acquire

using side-channel attacks, however these models are fraught with difficulties and have inherent

limitations in achieving generality. There are parallels between the KDM security and leakage

resilient cryptography, with both models considering the leakage of secret data as encryptions

are performed.

In summary, the modern interconnected world relies on the ubiquity and robustness of cryp-

tography in its many forms. Provable security gives a clear idea of which types of adversary are

impotent against a scheme, allowing designers and implementors to focus on preventing other

avenues of attack. It is vitally important that the theoretical treatment of the cryptography that is

used in practice takes into account as many attack scenarios as possible, and the work in this the-

sis furthers the understanding of security in the presence of adversaries with strong capabilities.

1.2 Publications

The material in this thesis is primarily based on the following two papers that have appeared at

international conferences:
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[98] Gareth T. Davies and Martijn Stam: KDM security in the Hybrid Framework. In CT-RSA

2014, LNCS volume 8366, pages 461–480, Springer, Berlin, Germany.

[68] Florian Böhl, Gareth T. Davies, and Dennis Hofheinz: Encryption Schemes Secure under

Related-Key and Key-Dependent Message Attacks. In PKC 2014, LNCS volume 8383, pages

483–500, Springer, Berlin, Germany.

1.3 Thesis Outline

Chapter 2 gives some preliminary notions and fixes notation. Chapter 3 shows how to achieve

KDM security when using hybrid encryption, with a proof in the random oracle model, and much

of the work in this chapter is included in the extended abstract [98] and the full version [97]. Chap-

ter 4 investigates the link between RKA security and KDM security, giving a novel composition

theorem and a number of instantiations indicating the utility of a joint definition; this chapter

reflects some of the content in [68] and the full version [67], however this thesis additionally

contains a number of changes from the published work.
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2.4.1 Security Models for KEMs and DEMs . . . . . . . . . . . . . . . . . . . . . 22

2.5 Pseudorandom Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Assumptions in Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.1 Hard Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

This chapter will outline notational conventions and present some standard notions of secu-

rity that will be used later in the thesis. We will first discuss provable security and mechanisms

used for encryption, then give a number of mathematical tools and assumptions used later on.

This thesis will look in detail at security models for symmetric encryption, where the com-

municating parties share a key that is used for both encryption and decryption, and public key

encryption, where each user has a key pair with which they can communicate. Throughout this

thesis we will write (Pg,Kg,E,D) for the parameter generation, key generation, encryption and
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2.1 Provable Security

decryption algorithms of symmetric key cryptosystems, and (PGen,KGen,Enc,Dec) for the algo-

rithms associated with public key cryptography.

2.1 Provable Security

In this chapter we give some notions of security for some fundamental cryptographic primitives

and protocols, and show how to use hardness assumptions. A proof of security gives confi-

dence in the ability of a cryptographic primitive to resist a well-defined class of potential attacks.

This means that we need to formally define the primitive in terms of the algorithms and their

inputs/outputs, and the adversarial environment in which the class of adversaries operates.

There are two main approaches for security proofs, namely unconditional/information-theoretic

security which means that a scheme is secure against even a computationally unbounded ad-

versary, and computational security where we define security against some class of adversarial

attackers with certain resources. The former approach was introduced by Shannon [180] with

respect to the one-time pad, and in modern cryptography it is often used in the study of secret

sharing [179, 52] and commitment schemes [169, 84]. The latter approach can be roughly divided

into two categories: using term algebras to abstract the operations in cryptographic systems then

only considering adversaries that respect this term structure (i.e. only perform operations that are

meaningful in the term algebra), and proofs using so-called security games to model an adver-

sary’s environment. The former approach, known as the symbolic approach, takes cryptographic

primitives as black boxes and is often used to analyse relatively complex protocols. Through-

out the thesis we will use game-based security definitions and employ reductionist proofs. This

means a security property for a particular cryptographic scheme is defined as a game between a

challenger and an adversary, and we show security by reducing the task of winning the game,

and consequently ‘breaking’ security, to the task of solving an underlying ‘hard’ problem.

The general approach is to define what it means for a scheme to be secure, in terms of the

possible interactions that can occur between the adversary and the challenger as well as the ad-

versary’s winning condition, and to clearly define a class of adversaries. A proof by reduction

will then show that, as long as some ‘well-studied’ problem is indeed hard, the scheme is in fact

secure against that class of adversaries. In more detail, we first assume that problem P is hard,

and then show that if there exists some efficient algorithm A that breaks our scheme, then there

exists an efficient algorithm A1 that breaks P. We ask that the algorithm A1, often called ‘the re-

duction’, usesA in a black-box way and does not assume anything aboutA’s internal behaviour:

this is because we need the previous statement to hold for every possible winning algorithm A in

8



2.1 Provable Security

the class. Of course this means that there may exist attacks that are outside of the assumptions

we made about the capabilities of the adversary, and whether or not this approach is appropriate

is a topic of contention [26, 144].

2.1.1 Game Hopping

The technique of proof by reduction for a scheme is an extremely useful tool, but it may not

be possible to create a reduction directly from the security experiment to some hard problem or

assumption. It is often necessary to employ the technique of game hopping, which means slowly

manipulating the adversary’s environment until the attack success can be computed or bounded.

Along the way we bound the adversary’s probability in distinguishing these minor changes to

its environment, giving us an overall bound for the success in the security experiment that we

started with. We will write Pr
[
GA = 1

]
to represent the probability that the game output is 1

when we run game G with an adversary A.

The concept of a game hopping proof stems from hybrid arguments first used by Goldwasser

and Micali [120] and Yao [188] and was stated more deliberately by Bellare and Goldwasser [34].

The development of code-based game hopping proofs started with Killian and Rogaway’s work

analysing DESX [140, 141]—this important step of regarding games as programs instead of ab-

stract environments has been embraced by a large number of authors since. The works of Bellare

and Rogaway [51] and Shoup [183] created and explained the formalism necessary for authors to

extend game hopping proofs to other primitives.

There are three main types of game hop:

• Transitions that are just a re-formulation of the previous game: as far as the adversary is

concerned its interface with the challenger (and its success advantage) is identical. This

means that conceptual changes or rephrasing occur, but mathematical changes do not.

• Transitions based on failure events: if the code of games Gi and Gj differs only in statements

that follow the setting of a Boolean flag bad to true, then we say these two games are iden-

tical until bad. This utilises the fundamental lemma of game playing [51] (also known as the

difference lemma):

Lemma 2.1. Let Gi, Gj be identical until bad games, and let A be an adversary. Then

∣∣∣Pr
[
GAi = 1

]
− Pr

[
GAj = 1

]∣∣∣ ≤ Pr
[
GAj sets bad

]
.

• Transitions based on indistinguishability: this type of hop involves modifying one of the
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adversary’s inputs or interfaces (for example an oracle). Instead of drawing a value from

the correct distribution D1, we instead choose it from some modified distribution D2 that

is computationally indistinguishable from D1. The idea here is that if the adversary’s be-

haviour changes significantly then we have a way of distinguishing the distributions, so the

adversary’s attack success may only increase by its advantage in distinguishing D1 from D2.

Dent [101] provides a distinction between two types of failure events: those with small probabil-

ity as above and failure events that are large (but not overwhelming). The syntax used here is

inspired by Dent’s explanations.

The majority of security definitions in this thesis are indistinguishability-based notions, where

an adversary is asked to distinguish either a real execution from a ‘random’ execution, or provide

two inputs and decide which one has been used. Authors face a choice when conducting proofs

on indistinguishability-based security definitions: either give the base game as the security ex-

periment where a challenger is yet to select the challenge bit b and manipulate this environment,

or start at one of the ‘sides’ of the security experiment and hop to the other side. We will use both

approaches in this thesis, and indicate clearly which approach is being used for each proof.

A convention we use in this thesis is to start counting games from zero (G0,G1, . . . ), and keys

(in the case they are plural) from one (k1, k2, . . . ).

2.1.2 Cryptographic Adversaries

There is much discussion in the literature on how to represent adversaries in cryptography, and a

chasm has formed between authors preferring ‘concrete security’ [49, 43, 35] (meaning adversar-

ial success probability is defined by the number of queries made and is bounded by some small

value) and those in the ‘PPT security’ camp (adversaries are probabilistic polynomial time algo-

rithms where the scheme is secure if success is a negligible function in the security parameter).

For this thesis we will follow the concrete security approach.1 This means that our definitions of

primitives are in terms of an advantage function, and we say that a scheme is ‘secure’ if, for all

adversaries with resources that are ‘practical’, the advantage is ‘small’, with each term in inverted

commas deliberately informal. Any scheme (other than the one-time pad) is breakable if we don’t

limit the adversary, so it makes sense to define the adversary’s advantage as a function of its own

resources.

We consider adversaries to be algorithms, and the syntax Advnotion
scheme, A defines adversary A’s

1For the simple reason that the primary PhD supervisor is vehemently against the use of PPT (and footnotes) in the
field of cryptography.
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advantage in attacking the notion security of scheme. We will often utilise a Boolean variable

called flag, which is initialised to false and once set to true it stays true. When referring to

algorithms, the error symbol  will refer to an adversary attempting to do something which is

explicitly forbidden in the security game, and the symbol ⊥ will indicate where a computation

has gone wrong or an incorrect input has been supplied (e.g. invalid ciphertext to a decryption

algorithm).

The definitions that we use will try to place as few limits as is possible on the adversary

(within reason), so we only regard security in terms of the adversary’s resources rather than its

strategy.

2.1.3 Random Oracle Model

One of the major simplifying assumptions used in game-playing proofs is the introduction of a

so-called random oracle [48], an item that models a perfectly random (i.e. idealised) hash function.

This means that there exists an oracle, available to all parties, that takes arbitrary-length input

values and outputs an element of the output domain chosen uniformly at random. It takes unit

time to evaluate and has memory so that if it is ever given the same input twice, it will give

the same output to both queries. This means that we simply regard a random oracle as a large

input-output table, and in security proofs we use a technique called lazy sampling to fill in this

table each time a party queries the random oracle: initially the table is empty, and when a party

makes a query the oracle first checks if the value has previously been asked. This approach—

removing each party’s ability to compute hash values themselves—means that reductions can

not only monitor and simulate what hash function calls the adversary makes but in some cases

also modify these calls (leading to techniques such as programming [164, 113]).

This function has an infinite description yet is a useful tool in security proofs where we wish

to gauge security in the presence of a hash function. Schemes that are secure in the random

oracle model give no guarantees about what happens when we replace this random oracle with

a hash function such as SHA-3 or RIPEMD160, and as such proofs in the random oracle model

are regarded with caution and some scepticism [119, 160, 153]. In fact there exist encryption and

signature schemes that are secure in the random oracle model yet are trivially insecure when

implemented with any hash function [85, 164, 27].
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2.1.4 Representing Security Models for Encryption

We now elaborate on the types of security models that we will use and develop later on. We

follow the literature and use the convention goal-tools to denote security notions for encryption.

The item goal ∈ {KR,OW, IND} follows a clear hierarchy: KR refers to key recovery2 and is a weaker

notion than OW which is one-wayness (inversion), which in turn is weaker than IND which means

indistinguishability or the ability to distinguish ciphertexts. For the purpose of this work we will

consider tools ∈ {CPA,CCA}, which refers to chosen-plaintext attacks and the stronger notion of

chosen-ciphertext attacks respectively. We will write definitions in mathsf mode, e.g. IND-CPA, to

denote the precise security definition fully detailed in this thesis, and roman lettering, e.g. IND-

CPA, to refer to notions and proofs detailed by other authors (that may subtly vary from the ones

presented herein).

The definitions of IND-CPA for symmetric key encryption (SKE) and IND-CCA for public key

encryption (PKE) detailed later in this section relate to the privacy (confidentiality) of the scheme

and ignore the goals of integrity (a recipient is assured that the message it receives is the one sent

without accidental changes or intentional tampering), and authenticity (the receiver is convinced

of the origin of the message). Achieving these tangential goals requires tools such as message

authentication codes (MACs) for SKE and digital signatures for PKE. In the SKE setting, the no-

tion of authenticated encryption with associated data (AEAD) [46, 175] combines these properties

in one clean definition and for some time this has been the gold standard. This thesis will only

consider privacy unless explicitly stated; notions of integrity and authenticity are beyond the

intended scope.

In the following sections, pictorial representations indicate that the adversary sends one pair

of messages and receives a single challenge ciphertext from the challenger which is generally re-

ferred to as the single-query, left-or-right setting. If we allow the adversary to submit a number of

message pairs and receive a number of challenge ciphertexts, it is possible to use a hybrid argu-

ment to show that in fact this is equivalent3 (up to a (polynomial) tightness factor) to the single-

query scenario. While it is often intuitively (and formally) easier to use single-query definitions,

there are a number of reasons to employ the multi-query versions. Firstly, these hybrid argu-

ments do not work for RKA and KDM security definitions, meaning that the single- and multi-

query scenarios are two distinct cases. The second reason is tightness [50, 131, 89]: these hybrid

arguments incur a loss of a factor of q (where q is the number of queries the adversary makes) in

2Note that this is short for security against key recovery, the goal of the scheme.
3Intuitively a successful adversary uses one of the challenge ciphertexts to distinguish, hence in the PPT setting an

adversary is only allowed a polynomial number of challenge ciphertexts.
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the security bound for the multi-query case, and in some scenarios this loss may be unacceptable

and using the multi-query setting as a starting point is preferable. For these reasons the formal

definitions refer to this multi-query scenario, with these queries and the challenger’s responses

represented by a ‘left-or-right oracle’. The decision to use left-or-right notions in this section is

for ease of exposition—later on in Chapter 4 it will be more intuitive to use real-or-random notions

where the adversary is allowed to submit a message and receives either a legitimate encryption

of that message or an encryption of a random element of the message space. For the IND-CPA

and IND-CCA notions in this chapter, left-or-right and real-or-random are equivalent notions [32],

and are equivalent to two further notions: find-then-guess and semantic security4 (introduced by

Goldwasser and Micali [120]), which are beyond the scope of this work.

Many algorithms throughout this thesis will take as input a security parameter λ. We will

use x← Alg(λ) and assume that all algorithms can interpret integer values as bitstrings and vice

versa. Many authors write this as x ← Alg(1λ) to reflect the fact that PPT algorithms run in time

that is polynomial in the size of the input.

2.2 Symmetric Encryption

A symmetric encryption scheme Σ with message space M is defined by a tuple of algorithms

(Pg,Kg,E,D) which operate as follows:

• Pg: Parameter generation takes as input a security parameter λ and outputs some public

parameters pp, we write this as pp← Pg(λ).

• Kg: Key generation takes as input parameters pp and outputs a symmetric key k, denoted

by k← Kg(pp).

• E: Encryption takes as input parameters pp, a message m ∈ M and key k and outputs a

ciphertext c, written c← Ek(m, pp).

• D: Decryption takes parameters pp, a ciphertext c and key k and outputs either a message

m ∈ M or error symbol ⊥ and we write this m/⊥ ← Dk(c, pp).

Correctness requires that Dk(c, pp) = m for all m ∈ M, all c← Ek(m, pp) and all k← Kg(Pg(λ)).

Parameter and key generation are randomised algorithms, the encryption algorithm may be ran-

domised or stateful, decryption is deterministic. For many instantiations in the literature and this

4Roughly: a scheme is secure if an adversary, when given a ciphertext (and length of the plaintext), must use an
‘infeasible’ amount of resources to gain any additional information about the underlying plaintext message.
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work, the parameter generation algorithm Pg and the parameters pp that it outputs are omitted

for clarity; we will often write c ← Ek(m) for encryption and m ← Dk(c) for decryption. Note

that many authors use the notation E(k, m) to denote that message m is encrypted under key

k, this thesis will use the subscript notation throughout. Many authors focusing on the single-

user setting choose to omit parameter generation; however, to reflect the multi-query definitions

employed later in this work we make a distinction between parameter and key generation.

The most well known and widely used primitives for constructing symmetric encryption

schemes are stream ciphers (such as RC4) and block ciphers (such as AES and DES). Symmetric

encryption requires the keys to be securely distributed to each party involved in the communi-

cation, and this is often a challenging task—in a network of n users each pair of communicating

parties need to agree a key, requiring n(n−1)
2 keys. In many scenarios this will be an insurmount-

able barrier, and use of public key cryptography is desirable.

2.2.1 Indistinguishability under Chosen-Plaintext Attack

We now describe the IND-CPA game for a symmetric encryption scheme Σ = (Pg,Kg,E,D).

A
m0, m1

pp← Pg(λ)
k← Kg(pp)

b $←− {0, 1}
Ek(mb) = c∗

b′

OE

m

c← Ek(m)

Figure 2.1: IND-CPA game for Symmetric Encryption

The challenger runs Pg to get parameters pp and Kg to get a key k, and chooses the challenge

bit b. Fig. 2.1 pictorially represents the game in the case where the adversary can only make one

‘left-or-right’ query. A runs and eventually outputs b′ (as its guess for which ‘world’ it is in) with

the assistance of an encryption oracle OE. We say that A wins iff b′ = b, and the scheme Σ is

IND-CPA secure if A’s advantage is no better than guessing. A more formal definition is given in

Def. 2.1.

Note that the encryption algorithm aborts if the input message is not in the message space—

this behaviour will be assumed throughout the thesis and explicit mention will often be omitted.

The left-or-right oracle LRb is written with a subscript b to emphasise that it has the challenge

bit hardwired. The oracles E(·) and LRb(·) also take the public parameters pp as input, again

this is assumed and explicit mention will be omitted for clarity. The LRb oracle checks if the two

messages m0 and m1 are of the same length; this stops trivial attacks on schemes where the length
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ExpIND-CPA-b
Σ, A (λ) :

pp← Pg(λ)
k← Kg(pp)
b′ ← ALRb, E(pp)
return b′

E(m) :
if m 6∈ M then

return ⊥
c← Ek(m)
return c

LRb(m0, m1) :
if m0 or m1 6∈ M then

return  
if |m0| 6= |m1| then

return  
c← Ek(mb)
return c

Figure 2.2: The experiment defining IND-CPA security for symmetric encryption.

of the ciphertext depends on the message length.

Definition 2.1 (IND-CPA Security for Symmetric Encryption). Let Σ = (Pg,Kg,E,D) be a symmetric

encryption scheme. Then the IND-CPA advantage for an adversary A against Σ is defined by

AdvIND-CPA
Σ, A (λ)

de f
=

∣∣∣∣ ∑
b∈{0,1}

(−1)b · Pr
[
ExpIND-CPA-b

Σ, A (λ) = 1
]∣∣∣∣

where experiment ExpIND-CPA-b
Σ, A is given in Fig. 2.2.

The ∑b∈{0,1}(−1)b notation will be used throughout this thesis and is a consequence of page-

width constraints.

2.3 Public Key Encryption

In public key cryptography each entity has a public key and a secret key. If Alice wants to send a

message to Bob she looks up Bob’s public key pkB and uses that to encrypt her message, Bob then

uses his secret key skB to decrypt. PKE was invented independently in the 1970s by Cocks and

Ellis [111, 90, 112] (only declassified in 1997) and Diffie and Hellman [103]. A public key encryp-

tion scheme Π with message spaceM is defined by a tuple of algorithms (PGen,KGen,Enc,Dec)

which operate as follows:

• PGen: Parameter generation takes as input a security parameter λ and outputs some public

parameters pp, we write this as pp← PGen(λ).

• KGen: Key generation takes as input parameters pp and outputs a pubic (encryption) key

pk and corresponding secret (decryption) key sk, denoted (sk, pk)← KGen(pp).
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• Enc: Encryption takes as input parameters pp, a message m ∈ M and public key pk and

outputs a ciphertext c, written c← Encpk(m, pp).

• Dec: Decryption takes parameters pp, a ciphertext c and decryption key k and outputs either

a message m ∈ M or error symbol ⊥ and we write this m/⊥ ← Decsk(c, pp).

Correctness requires that Decsk(c, pp) = m for all m ∈ M, all c ← Encpk(m, pp) and all

(sk, pk) ← KGen(PGen(λ)). Similarly to symmetric encryption, parameter and key generation

are randomised algorithms, the encryption algorithm may be randomised or stateful, decryp-

tion is deterministic. Again we will often omit the parameters pp and write c ← Encpk(m) for

encryption and m ← Encpk(c) for decryption. The message space M will often depend on the

parameter generation algorithm PGen, and sometimes KGen too in cases like vanilla RSA. Many

PKE schemes work in algebraic groups so the parameters could be for example pp = (G, g), a

description of the group and a generator.

2.3.1 Indistinguishability under Chosen-Ciphertext Attack

We now give the IND-CCA game for a public key encryption scheme Π = (PGen,KGen,Enc,Dec).

Am0, m1

pk
pp← PGen(λ)
(pk, sk)← KGen(pp)

b $←− {0, 1}

Encpk(mb) = c∗

b′
OD

c 6= c∗

m′ ← Decsk(c)

Figure 2.3: IND-CCA game for public key encryption

The diagram in Fig. 2.3 represents a single-user, single-query version of the IND-CCA game

for public key encryption. The challenger runs the key generation algorithm to get a key pair

(pk, sk), and chooses the challenge bit b. A runs and eventually outputs b′ with the assistance of

a decryption oracle OD (note that since A has the public key, there is no need for an encryption

oracle). We say that A wins iff b′ = b, and the scheme Π is IND-CCA secure if A’s advantage is

no better than guessing. A more formal version of multi-user, multi-query IND-CCA encryption

is given in Def. 2.2.

The ‘forbidden list’ FL ensures that the adversary cannot trivially win by asking to decrypt

something it has received from the left-or-right oracle. The forbidden list FL is initially empty,

and we denote this by ∅ for ease of exposition. Note that the additions to FL are pairs of values,
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ExpIND-CCA-b
Π, A (λ) :

pp← PGen(λ)
t← 0
FL← ∅
b′ ← ANew, LRb, Dec(pp)
return b′

New():
t← t + 1
(pkt, skt)← KGen(pp)
return pkt

LRb(m0, m1, i) :
if m0 or m1 6∈ M then

return  
if |m0| 6= |m1| then

return  
c← Encski(mb)
FL← FL∪ {(c, i)}
return c

Dec(c, i) :
if (c, i) ∈ FL then

return  
m← Decski(c)
return m

Figure 2.4: The experiment defining IND-CCA security for public key encryption.

so for example if A’s first LR query results in (c, i) being added to FL, it could then immediately

ask Dec for (c, i′) for any i′ 6= i.

Definition 2.2 (IND-CCA Security for Public Key Encryption). Let Π = (PGen,KGen,Enc,Dec) be a

public key encryption scheme. The adversary A can call the key generation algorithm KGen to create new

users for the scheme, and will receive their public key. Then the IND-CCA advantage for an adversary A

against Π is defined by

AdvIND-CCA
Π, A (λ)

de f
=

∣∣∣∣ ∑
b∈{0,1}

(−1)b · Pr
[
ExpIND-CCA-b

Π, A (λ) = 1
]∣∣∣∣

where experiment ExpIND-CCA-b
Π, A is given in Fig. 2.4.

The definition of indistinguishability under chosen-ciphertext security given here is the

IND-CCA2 notion developed by Rackoff and Simon [173], which is stronger than the IND-CCA1

notion given by Naor and Yung [163]. The Naor-Yung definition is also known as a ‘lunchtime

attack’ because it models the scenario when a user’s computer is compromised while they are out

to lunch: the adversary is only allowed to query the decryption oracle Dec before it receives the

challenge ciphertext.

Many known IND-CCA-secure PKE schemes take an IND-CPA-secure scheme and use a non-

interactive proof system; the TDH2 ‘Signed ElGamal’ scheme of Gennaro and Shoup [184], the

Cramer-Shoup encryption scheme [93] and the DDN scheme by Dolev, Dwork and Naor [105]

follow this approach. This strategy means that intuitively an adversary in the IND-CCA game

needs to prove that it has knowledge of a plaintext in some valid ciphertext to win.
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2.3.2 Plaintext Checking Oracles

Okamoto and Pointcheval [165] introduced a notion for the PKE setting that is weaker than

chosen-ciphertext security, where the adversary has access to an oracle that on input a cipher-

text c and plaintext message m outputs 1 if c is a valid encryption of m and 0 if it is not. The

authors called it a Plaintext Checking Attack (PCA) and since no restrictions are placed on what

can be submitted (even the challenge ciphertext is allowed), indistinguishability notions don’t

make much sense so OW-PCA is the target for some applications where the oracle is a more ap-

propriate representation of reality than a CCA oracle. In the next section we describe a similar

notion for hybrid encryption.

2.4 Hybrid Encryption

While public key encryption solves the key transport problem, instantiations are generally con-

siderably slower than symmetric schemes and thus in practice a combination of the two is de-

sirable. We can succinctly describe a convergence of these goals using the notion of hybrid en-

cryption. We follow the work of Dent [100] and regard a hybrid encryption scheme as a public

encryption scheme that uses a (keyed) symmetric encryption scheme in a black-box way. Many

hybrid encryption schemes (but not all, see EPOC-2 [166]) can be separated to regard an asym-

metric part and a symmetric part; this is known as the KEM-DEM framework. This means that

when Alice wants to send a message m to Bob she picks a random symmetric key k, encrypts

k under Bob’s public key pkB and encrypts m using k to yield a two-component ciphertext

(ω, C) = (EncpkB
(k),Ek(m)). When Bob receives this ciphertext, he can ‘decapsulate’ k using

his secret key skB, then decrypt the message.

A KEM-DEM encryption scheme Hyb consists of a key encapsulation mechanism KEM =

(KEM.PGen,KEM.KGen,KEM.Encap,KEM.Decap), a data encapsulation mechanism DEM =

(DEM.Pg,DEM.E,DEM.D), and often a key derivation function KDF : KKEM → KDEM as a com-

patibility layer in between. We will use DEMs constructed from symmetric encryption schemes,

but note that DEMs only require encryption and decryption components since their key genera-

tion is done by the KEM. The syntax of a hybrid encryption scheme with message spaceM is as

follows, this is detailed pictorially in Fig. 2.5 and the algorithms are described in Fig. 2.6.

• Parameter and key generation for the KEM are done in the same manner as for a public key

encryption scheme. Key encapsulation KEM.Encap takes as input a public key, and returns

both a (symmetric) key k ∈ KKEM and an encapsulation ω thereof. Key decapsulation
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KEM.Decap takes as input a private key and a purported key encapsulation and returns a

key in KKEM or some designated error symbol ⊥.

• Data encapsulation DEM.E takes as input a message m ∈ M and a symmetric key in KDEM

and outputs an encryption C. A data decapsulation DEM.D takes a message encapsulation

C and a symmetric key in KDEM and outputs the message m or error symbol ⊥.

• A key derivation function KDF is simply a deterministic algorithm implementing a map-

ping from KKEM to KDEM. In addition to some key k the algorithm takes as input KEM.pk

and pp[DEM] (in order to determine KKEM and KDEM).

KGen

λ

skpk

ω KEM.DecapKEM.Encap

KDFKDF

DEM.DDEM.E

m′C

⊥

⊥m

k k′

hk h′k

Figure 2.5: Diagram of Hybrid Encryption

The diagram in Fig. 2.5 omits the parameter generation algorithm and the distribution of

public parameters to the other algorithms. We use the term protokey to describe the input to the

KDF (denoted k in Figures 2.5 and 2.6). The error symbol⊥ could be produced by the KEM.Decap

algorithm if it is given an invalid ω, or by DEM.D if it is given an invalid C.

Figure 2.6 emphasises the fact that hybrid encryption schemes are public key encryption

schemes, where the ciphertext is comprised of two components C and ω. Note that each time

we want to send a message we choose the symmetric key k so this is actually part of encryption

rather than key generation of the overall PKE scheme.

While hybrid encryption has been in widespread use ever since the advent of public key

cryptosystems, the first formalisation of the KEM-DEM paradigm was given by Cramer and
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Hyb.PGen(λ)
pp[KEM]← KEM.PGen(λ)
pp[DEM]← DEM.Pg(λ)
return (pp[KEM], pp[DEM])

Hyb.Enc(pp, pk, m)

(k, ω)← KEM.Encappk()
hk ← KDFpp,pk(k)
C← DEM.Ehk

(m)
return (ω, C)

Hyb.KGen(pp)
(pk, sk)← KEM.KGen(pp[KEM])
return (pk, sk)

Hyb.Dec(pp, sk, ω, C)

k← KEM.Decapsk(ω)
hk ← KDFpp,pk(k)
m← DEM.Dhk

(C)
return m

Figure 2.6: Algorithms for a Hybrid Cryptosystem Hyb.

Shoup [94, 95] in 2001. This followed the work of Shoup [182] at Eurocrypt ’00 that sketched a

definition for IND-CCA security of KEMs, and stated that combining a secure KEM with a pseu-

dorandom bit generator, an almost-XOR universal function [148] for message authentication and

a symmetric scheme that works using a one-time pad yields an IND-CCA-secure hybrid scheme.

Cramer and Shoup gave formal security definitions of IND-CPA and IND-CCA security for both

the KEM and the DEM part and proved that in the standard model, where the key derivation

function only needs to be (close to) balanced, the public key cryptosystem inherits security from

its constituent parts, e.g. IND-CCA security for both the KEM and the DEM part is a sufficient

condition to obtain an IND-CCA-secure hybrid PKE scheme. They additionally show that the

Cramer-Shoup cryptosystem [93] presented at CRYPTO ’98 and its generalisation to hash proof

systems neatly fits the hybrid framework, and the journal article [96] by Cramer and Shoup in

2003 covers both the cryptosystem from 1998 and their formalisation of hybrid cryptography that

followed soon after.

In 2004 Kurosawa and Desmedt [150] were the first to show that in fact it is possible to weaken

the security requirement on the KEM part, while maintaining IND-CCA security for the combined

scheme. They gave a hybrid scheme that replaces some of Cramer-Shoup’s algebraic components

with information-theoretically secure SKE primitives (resulting in an efficiency gain over the con-

structions suggested previously by Shoup [182] and Cramer and Shoup [93]), yet they could not

prove the KEM to be IND-CCA secure5 and Herranz et al. [127] showed in 2006 that it in fact

was not IND-CCA secure. At Crypto ’07 Hofheinz and Kiltz [130] showed that combining a no-

tion called constrained CCA (IND-CCCA) security—a notion that is stronger than IND-CPA but

strictly weaker than IND-CCA—with authenticated symmetric encryption yields an IND-CCA

5The Kurosawa-Desmedt hybrid scheme could not be rigourously cast in the hash proof system framework that
Shoup described since the underlying scheme is not quite universal2; it uses TCR hash functions, a computational
component, whereas universal2 is a statistical property.
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secure hybrid PKE scheme.

In work that inspired the results in Chapter 3, Dent [99] looked at various constructions of

KEMs from one-way secure public key cryptosystems (operating on a restricted message space).

He modelled the key derivation function as a random oracle and considered it as part of the

KEM. A typical example of such a construction is the use of a trapdoor function to encapsulate

a protokey r that is subsequently hashed to yield a derived key H(r). He shows several elegant,

generic KEM constructions that are IND-CCA secure based on fairly minimal assumptions on the

encryption scheme used to encrypt the protokey. For instance, in the example above security is

attained if the trapdoor function is one-way secure even in the presence of an oracle that checks

whether a ciphertext is a valid ciphertext or not (i.e., the actual range of the trapdoor function

is easily recognizable by the adversary), which Dent calls OW-CPA+ security. If the KEM is

constructed from a randomised public key cryptosystem, security based on one-wayness is proven,

provided that there is an efficient plaintext-ciphertext checking oracle that, when given a message

and ciphertext pair, correctly determines whether the ciphertext is an encryption of the message

or not. A fact that we will need later is the dichotomy in KEMs depending on the availability of

this key-encapsulation–encapsulated-key checking oracle KEM.Chkpk(ω, k) that, on input a key

encapsulation ω and purported encapsulated (proto) key k decides whether KEM.Decapsk(ω) = k

or not. This leads to the following two types of KEMs; each type will give a different reduction in

the security analysis in Section 3.5:

• In TYPE-1 KEMs there is an efficient checking oracle KEM.Chkpk(ω, k). This class encom-

passes all schemes that determine the encapsulation ω deterministically based on the key

k, including the usual schemes based on trapdoor permutations/functions. Diffie-Hellman

type KEMs in a pairing-based setting (where DDH is easy) can also be part of this class.

• In TYPE-2 KEMs there is no efficient checking oracle. This class contains all IND-CPA secure

KEMs. (The lack of a checking oracle means that the reduction will need to guess whether

a query H(k) corresponds to a challenge ciphertext or not, leading to a less tight reduction.)

We refer to the above-mentioned articles for general security notions for KEMs and DEMs;

for Chapter 3 we will be particularly concerned with µOW-CCA for KEMs, where the µ indicates

there can be multiple key pairs in the game and the adversary can make multiple encapsulation

queries for each public key (see Def. 2.3) and IND-CCA for DEMs (see Def. 2.4).
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2.4.1 Security Models for KEMs and DEMs

When we regard a KEM on its own, the one-way definition of security is more intuitively useful

than an indistinguishability-based notion—this is because in practice the protokey output by the

KEM is usually fed into some hash function to derive the key used by the DEM. Indeed some

applications such as identification schemes [12] and selective-opening-secure schemes [128] only

require OW-secure KEMs. Later on we will need the µOW-CCA definition of security for key

encapsulation mechanisms, so we detail this security game now. A can obtain as many key en-

capsulations as desired (specifying an index i for the public key it wishes to receive an encryption

under) and needs to predict correctly the key of one of the encapsulations. A can decapsulate

values of ω, under specified secret key ski, as long as such a pair was not created by Enc. The

normal OW-CCA game limits the number of Encap queries to one.

Definition 2.3. Let KEM = (KEM.PGen,KEM.KGen,KEM.Encap,KEM.Decap) be a key encapsulation

mechanism. Then the µOW-CCA advantage of an adversary A against KEM is defined by

AdvµOW-CCA
KEM, A (λ)

de f
= Pr

[
ExpµOW-CCA

KEM, A (λ) = 1
]

where the experiment ExpµOW-CCA
KEM, A (λ) is given in Fig. 2.7.

ExpµOW-CCA
KEM, A (λ):

pp← KEM.PGen(λ)
t← 0
n← 0
sk← ()
FL← ∅
(j, k′)← ANew, H, Encap, Decap(pp)
if k′ = kj

return 1
return 0

Encap(i):
n← n + 1
(ω, k)← KEM.Encappki

()

FL← FL∪ {(ω, i)}
kn ← k
return ω

New():
t← t + 1
(pkt, skt)← KGen(pp)
Append skt to sk
return pkt

Decap(ω, i):
if (ω, i) ∈ FL then

return  
k← KEM.Decapski

(ω)
return k

Figure 2.7: The µOW-CCA security experiment for KEMs.

Also required later on are security notions for data encapsulation mechanisms, and we give

the standard notion of indistinguishability under chosen-ciphertext attack, or IND-CCA, here. For
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the purposes of this definition we assume there is an algorithm DEM.Kg that generates keys for

DEM, even though in many constructions this algorithm will be part of the KEM.

Definition 2.4. Let DEM = (DEM.Pg,DEM.Kg,DEM.E,DEM.D) be a data encapsulation mechanism.

Then the IND-CCA advantage of an adversary A against DEM is defined by

AdvIND-CCA
DEM, A (λ)

de f
=

∣∣∣∣ ∑
b∈{0,1}

(−1)b · Pr
[
ExpIND-CCA-b

DEM, A (λ) = 1
]∣∣∣∣

where the experiment ExpIND-CCA-b
DEM, A (λ) is given in Fig. 2.8.

ExpIND-CCA-b
DEM, A (λ):

pp← DEM.Pg(λ)
FL← ∅
k← DEM.Kg(pp)
b′ ← ALRb, D(pp)
return b′

LRb(m0, m1):
if |m0| 6= |m1| then

return  
C← DEM.Ek(mb)
FL← FL∪ {C}
return C

D(C):
if C ∈ FL then

return  
m← DEM.Dk(C)
return m

Figure 2.8: The IND-CCA security experiment for DEM.

This is very similar to the definition of IND-CCA security for symmetric encryption; the

single-query (i.e. just one query to LR) variant of this definition is often used to capture the ‘one-

shot’ nature of DEM encryption, but we seek a more general result so use this multi-query version.

2.5 Pseudorandom Functions

While this thesis is mainly focused on security models for encryption, we will require one other

tool to complete our proofs, namely the definition of a pseudorandom function (PRF). PRFs, and

their cousins pseudorandom permutations (PRPs), are often used in the design of cryptographic

protocols (a block cipher is a family of permutations).

Definition 2.5 (Pseudorandom functions). Let F : I × D → R be a family of functions from domain

D = {0, 1}λ to range R indexed by seeds I . For x ∈ I we let Fx(y) : D → R be defined by Fx(y) =

F(x, y) ∀y ∈ D. Let Fun[D,R] be the set of all functions from D to R. Then the PRF advantage of an

adversary A attacking F is given by

AdvPRF
F, A(λ)

de f
=

∣∣∣∣ ∑
b∈{0,1}

(−1)b · Pr
[
ExpPRF-b

F, A (λ) = 1
]∣∣∣∣

where experiment ExpPRF-b
F, A (λ) is given in Fig. 2.9
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ExpPRF-b
F, A (λ) :

x $←− I
g $←− Fun[{0, 1}λ,R]
b′ ← ALRb(λ)
return b′

LRb(y) :
z1 ← Fx(y)
z0 ← g(y)
return zb

Figure 2.9: PRF experiment for function F.

Intuitively F is a PRF if an adversary cannot distinguish oracle access to a function chosen

from F from oracle access to a random function from the same domain and range as F. A similar

definition emerges for weak-PRPs if we restrict D = R, and to obtain a definition for strong-

PRPs we also give the adversary access to the inverse of F (or the inverse of the randomly chosen

permutation g). This thesis will not investigate block cipher design or analysis, but in a proof in

Section 3.5.2 we will require a PRF as a black box.

2.6 Assumptions in Cryptography

Public key cryptography requires a number of mathematical techniques; we will detail the most

important aspects here. We will describe a number of problems and assumptions; the general

approach is to define a problem (where an adversary is tasked with making a computation or

computing something) and then make the assumption that solving this problem is hard, at least

for some parameter choices.

We will require Euler’s Phi Function, denoted ϕE(N), which is defined to be the number of

positive integers less than or equal to N that are relatively prime to N, and Blum integers, which

are values N = pq where p and q are primes such that p, q ≡ 3 mod 4. Let Primes[x] denote the

set of primes of length x bits.

2.6.1 Hard Problems

In cryptographic security proofs the general tactic is to form a reduction from the scheme in ques-

tion to a specific property of the primitive or an assumption that is assumed to be hard. When

discussing block ciphers within modes of operation, the block cipher itself is often assumed to be-

have like a pseudorandom permutation (i.e. PRF where domain and range are equal), and in the

realm of traditional public key encryption it is typical to use reductions to hard number-theoretic

problems.

The idea is that one can construct public key encryption from so-called trapdoor one-way func-
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tions, meaning functions that are efficient to compute yet difficult to invert without the knowledge

of some extra information, known as the trapdoor. Perhaps the best known method of public key

encryption is the (vanilla) RSA cryptosystem, the security of which relies on the RSA problem

which is closely linked to the difficulty of factoring large integers.

2.6.1.1 Problems Related to Factoring

ExpFactor
A (λ) :

p, q $←− Primes[λ/2]
N← p · q
x′ ← A(N)
if x′ ∈ {p, q} then

return 1
else

return 0

ExpDCR-b
Z∗

N2 , A(λ) :

p, q $←− Primes[λ/2]
N← p · q
if b = 1 then

x $←− CRN2

if b = 0 then
x $←− Z∗N2

b′ ← A(N, x)
return b′

ExpQR-b
Z∗N, A(λ) :

N $←− Blum[λ]
if b = 1 then

y $←− QRN
if b = 0 then

y $←− Z∗N[+1]
b′ ← A(N, y)
return b′

Figure 2.10: Factoring, DCR and QR experiments

Factoring. Let N = p · q be an integer of length λ. We say that the Factoring assumption holds

for N if it is hard to recover p (or q). Formally, for security parameter λ, the advantage of an

adversary A against factoring N is defined by

AdvFactor
N, A (λ)

de f
= Pr

[
ExpFactor

N, A (λ) = 1
]

where ExpFactor
N, A (λ) is given in Fig. 2.10.

DCR assumption. [167] Let N be a RSA modulus of length λ, and let CRN2 = {uN mod N2|u ∈

Z∗N2} be the set of Nth Residues modulo N2. We say that the Decision Composite Residue (DCR)

assumption holds if it is hard for an adversary to decide whether elements of Z∗N2 are composite

residues or not. More formally, the advantage of an adversary A against DCR in Z∗N2 is defined

by

AdvDCR
Z∗

N2 , A(λ)
de f
=

∣∣∣∣ ∑
b∈{0,1}

(−1)b · Pr
[
ExpDCR-b

Z∗
N2 , A(λ) = 1

]∣∣∣∣
where ExpDCR-b

Z∗
N2 , A(λ) is given in Fig. 2.10.

QR assumption. Let N be a Blum integer of bitlength λ. With Z∗N[+1] we denote the set of ele-

ments in Z∗N with Jacobi symbol +1 and with QRN := {x2 mod N : x ∈ Z∗N} the set of Quadratic
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Residues modulo N. We say that the Quadratic Residue (QR) assumption holds if it is hard for

an adversary to decide whether elements of Z∗N are quadratic residues or not. More formally, the

advantage of an adversary A against QR in Z∗N is defined by

AdvQR
Z∗N, A(λ)

de f
=

∣∣∣∣ ∑
b∈{0,1}

(−1)b · Pr
[
ExpQR-b

Z∗N, A(λ) = 1
]∣∣∣∣

where ExpQR-b
Z∗N, A(λ) is given in Fig. 2.10.

2.6.1.2 Problems Related to Discrete Log

The discrete logarithm problem (DLP), which asks an adversary, given gx, to find x, has found

numerous uses in cryptography, often using cyclic groups of (known) prime order. The decisional

Diffie-Hellman (DDH) problem, which is used in the proof of security of the ElGamal [110] and

Cramer-Shoup [93] encryption schemes, gives an adversary (g, gx, gy) and either gxy or gz for

random z, and asks the adversary to decide which. Clearly an adversary that can solve the DLP

can calculate x and y and thus solve DDH. A related problem is the computational Diffie-Hellman

(CDH) problem, which asks an adversary, given (g, gx, gy), to compute gxy. CDH is a weaker

assumption than DDH since an adversary solving CDH can trivially win the DDH, but CDH is

stronger than the DLP (this is not strict since in some groups both problems may be easy) [69, 136].

We can generalise the DDH assumption: the k-linear problem [130, 178] asks an adversary,

given (g0, g1, . . . , gk, gr1
1 , . . . , grk

k , T) for r1, . . . , rk ∈ Z∗p and g0, . . . , gk ∈ G, to decide whether T =

gr1+···+rk
0 or T = gz

0 for some z ∈ Z∗p. The k-linear assumption says that this is a hard problem; the

case k = 1 corresponds to DDH and k = 2 is the Decision Linear (DLIN) assumption [70].

ExpDLP
G, A(λ) :

g $←− G

x $←− |G|
y← gx

x′ ← A(g, y)
if x = x′ then

return 1
else

return 0

ExpDDH-b
G, A (λ) :

g $←− G

x, y, z $←− |G|
if b = 1 then

c← gxy

if b = 0 then
c← gz

b′ ← A(g, gx, gy, c)
return b′

Figure 2.11: Discrete Logarithm Problem and Decisional Diffie-Hellman experiments

Discrete Logarithm Problem. The discrete logarithm problem (DLP) over a group G (that may

depend on the security parameter λ) holds if given g ∈ G and y = gx where x $←− [|G|], it is hard
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to find x. Formally, the advantage of an adversary A against DLP in G is defined by

AdvDLP
G, A(λ)

de f
= Pr

[
ExpDLP

G, A(λ) = 1
]

where ExpDLP
G, A(λ) is given in Fig. 2.11.

DDH assumption. [103] The decisional Diffie-Hellman (DDH) assumption over a group G (that

may depend on the security parameter λ) stipulates that (g, gx, gy, gxy)
c≈ (g, gx, gy, gz),

where g $←− G and x, y, z $←− [|G|]. More formally, the advantage of an adversary A against

DDH in G is defined by

AdvDDH
G, A (λ)

de f
=

∣∣∣∣ ∑
b∈{0,1}

(−1)b · Pr
[
ExpDDH-b

G, A (λ) = 1
]∣∣∣∣

where ExpDDH-b
G, A (λ) is given in Fig. 2.11.
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3.1 Overview and Motivation

The work in this chapter is largely based on KDM Security in the Hybrid Framework by Davies and

Stam [98] published at CT-RSA 2014. The full version is available via ePrint [97].

Standard definitions of security for encryption do not consider the scenario where the message

being encrypted may depend on the key used for encryption. Most cryptographic constructs

would consider this a dangerous abuse and standard security criteria (e.g. IND-CPA and IND-

CCA) do not take this type of behaviour into account. This concern has been known since 1984
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when Goldwasser and Micali [See [120] Section 5.1] noted the danger of encrypting messages that

the adversary cannot find. As a straightforward example of how this concern can arise in practice,

when full-disk encryption is performed on a hard drive, (a representation of) the encryption key

will be encrypted under itself, along with the disk contents.

The general field of KDM security encompasses formal definitions, positive constructions and

impossibility results for the behaviour of cryptographic primitives when an adversary is allowed

some access to encryptions of the secret keys. The first formal treatment of this notion was given

by Black, Rogaway and Shrimpton in 2002 [65]. Intuitively, a scheme is key-dependent message

secure (IND-KDM-CPA) with respect to a class Ψ of (efficiently evaluatable) functions if an ad-

versary cannot distinguish an oracle that, on input ψ ∈ Ψ, returns an encryption of ψ applied to

the decryption key(s) from an oracle that returns encryptions of a fixed element of the message

space. This definition and its chosen-ciphertext analogue are equivalent to standard notions of

IND-CPA and IND-CCA security when Ψ is limited to constant functions. The KDM definitions

are in fact stronger, as there exist schemes that are IND-CPA secure yet are trivially insecure in the

KDM setting: for example, take an IND-CPA secure symmetric scheme and modify the encryp-

tion algorithm so that if the input is the encryption key then output the key in the clear, otherwise

proceed as normal. Omitting a straightforward correctness argument, this scheme is still IND-

CPA secure (since the probability that an adversary queries a message that is equal to the key is

negligible), yet the adversary in the KDM game needs only one query of the identity function to

distinguish.

Encrypting a system’s keys may in fact be useful: in anonymous credential systems [83] key-

dependent encryptions are generated so that users are discouraged from delegating their own

secret keys1. Aside from being a theoretical consideration of practical attacks and a component

for credential systems, the study of key-dependent message attacks has seen a number of further

applications. As a contribution to the formal methods community, it was shown that the defi-

nition of key-dependent message security presented by Black et al. [65] could be used to prove

the equivalence between computational security and axiomatic security (i.e. results that are proven

in a formal calculus are computationally sound). While it is perhaps easier to motivate KDM

security for symmetric encryption due to the example of disk encryption, the research focus on

KDM-secure PKE constructions and the proliferation of works on anonymous credentials and

formal methods demonstrate that there is appetite for research in KDM-secure PKE. Given that

in practice PKE is almost always performed using hybrid encryption (see Section 2.4), a natural

1A user who shares one of her credentials once gives him the ability to use all of her credentials, thus taking over
her identity.
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question is how can one construct KDM-secure hybrid encryption? This question was open for a

number of years, and is solved by the work detailed in this chapter.

We describe how to achieve KDM chosen-ciphertext security for hybrid encryption, prescrib-

ing the sufficient conditions for the asymmetric key encapsulation mechanism (KEM) and the

symmetric data encapsulation mechanism (DEM). Precisely, if the KEM is µOW-CCA (where the

µ indicates multiple targets for inversion), the DEM is IND-CCA and the key derivation function

is modelled as a random oracle, then the resulting hybrid construction is IND-KDM-CCA secure.

Components of the proof are technically challenging and non-standard. The chapter will also

give extensions of known separation results in KDM and circular security, demonstrating that

hybrid encryption does not always provide leverage in resisting key-dependent message attacks.

3.2 Related Literature

The foundations of research in KDM security were laid by two (concurrent and in-

dependent) papers. The work of Camenisch and Lysyanskaya [83] looked at n-

circular security for public key encryption: an adversary attempts to distinguish

Encpk1
(sk2),Encpk2

(sk3), . . . ,Encpkn−1
(skn),Encpkn

(sk1), as well as encryptions of chosen mes-

sages, from encryptions of zero (n is the total number of key pairs in the system). This is a

strictly weaker notion than the one given by Black et al. [65] that allows arbitrary functions on

the decryption key (with a ‘length-regularity’ restriction that ensures the length of the output

function does not depend on the secret key to stop trivial attacks). The main focus for Camenisch

and Lysyanskaya was an anonymous credential system: encrypting different secret keys with one

another creates an all-or-nothing property, discouraging users from transferring their individual

credentials.

Constructing KDM-secure Public Key Encryption. Creating schemes that are KDM secure in

the standard model for meaningful function classes posed a challenge for a number of years after

the definitions were presented [83, 65]. The schemes detailed in this section largely use hardness

assumptions and techniques generally associated with public key encryption, so schemes are

in the PKE setting unless stated otherwise. Hofheinz and Unruh [132] gave a standard model

construction that considered a limited class of functions that in particular did not include key

cycles.

Boneh, Halevi, Hamburg and Ostrovsky (BHHO) at Crypto 2008 [72] gave the first IND-KDM-

CPA-secure construction (see Section 3.3.1 for the formal definition) for the rich affine function
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class, given in the standard model and under the decisional Diffie-Hellman assumption—more

details of this scheme can be found in Section 3.4.2. The authors also showed that one-way secu-

rity does not imply circular security. Boneh et al.’s scheme was improved upon by Camenisch,

Chandran and Shoup [82] who gave a scheme secure against IND-KDM-CCA attacks (see Section

3.3.2 for definition). Barak et al. [25] wanted to admit a larger function class, and presented a con-

struction that is (IND-KDM-CPA) secure in their bounded-KDM model, meaning KDM security

for all Boolean circuits of bounded circuit size. Soon after, Malkin et al. [159] gave an IND-KDM-

CPA secure scheme relying on LWE/LPN that was considerably more efficient than prior efforts:

the ciphertext size depends only on the degree bound for the polynomial (other parameters for

the scheme are independent of the function or the number of users). Hofheinz [129] achieved

compact (constant size) ciphertexts using lossy algebraic filters to present a scheme that is CIRC-

CCA secure, and Lu et al. [157] expanded this by giving a construction with compact ciphertexts

that achieves full IND-KDM-CCA security for affine functions using RKA-secure authenticated

encryption. A number of other schemes [74, 75, 13] gave other positive results expanding the

admissable function classes, and more details of some of the schemes in this line of work can be

found in the next chapter. Wee [187] gave a general framework that captures a number of these

constructions [72, 74, 75], linking the pursuit of KDM-secure encryption schemes with (homo-

morphic) smooth projective hashing.

Symmetric Encryption. In 2007 Halevi and Krawczyk [125] gave an analysis of deterministic

symmetric schemes, and detailed a PRF even when inputs depend in an arbitrary (but a priori

known) manner on the key. In particular they show that if one constructs an SKE scheme using

such a key-dependent input-secure PRF, the underlying PRF’s resilience against key-dependent

inputs/messages will be passed on to the SKE scheme. Halevi and Krawczyk also describe how

the IEEE P1619 standard group (Security in Storage Working Group), when working on a stan-

dard for sector-level encryption, were informed that the Windows Vista disk encryption imple-

mentation (in some situations) stored an encryption of its own secret key and consequently de-

cided to encourage use of the XE/XEX block ciphers developed by Rogaway [176] rather than the

tweakable block cipher of Liskov, Rivest and Wagner [156]. Furthering this work, Bellare, Cash

and Keelveedhi [30] showed how to create PRPs that are KDM secure in the standard model,

assuming PRP-CCA security of the underlying (tweakable) cipher.

Soundness and Formal Methods. Abadi and Rogaway [3] considered soundness of encryption,

bridging the gap between the formal modelling approach (in terms of symbolic expressions) and

31



3.2 Related Literature

the computational model (regarding adversaries in terms of complexity and probabilities), and

described how security reductions go through if key-cycles are disallowed. Laud and Corin [152],

Adão et al. [7], Küsters and Tuengerthal [151] and Backes et al. [22, 23] furthered the understand-

ing of key-cycles in formal proofs, linking the symbolic approach taken by the formal methods

community with the computational approach. Comon-Lundh and Cortier [91] survey results in

computational soundness and discuss the importance of the assumption of disallowing key cy-

cles.

Impossibility Results. A number of works have given negative results: Haitner and Holen-

stein [124] showed the impossibility of obtaining KDM security based on standard assump-

tions and using standard techniques; in particular there exists no reduction from a KDM-

secure encryption scheme to any cryptographic assumption if the reduction regards the ad-

versary and the function as black boxes (for meaningful function classes). Acar et al. [6]

looked at the link between circular-secure encryption and cryptographic agility (meaning the

ability of individually secure schemes to share a key), and presented an example of an IND-

CPA secure PKE scheme (under SXDH) that is not 2-circular secure, and give a distinguish-

ing attack—Bishop et al. [62] give counterexamples of the same result using DLIN and LWE.

Cash, Green and Hohenberger [87] presented n-weak circular security where instead of distin-

guishing a key cycle from an encryption of zero, the adversary is handed an encrypted cycle

Encpk1
(sk2),Encpk2

(sk3), . . . ,Encpkn−1
(skn),Encpkn

(sk1) and then goes on to play the IND-CPA or

IND-CCA game as normal.2 The authors go on to show that there exists an IND-CPA-secure PKE

scheme that is not 2-weak circular secure and the adversary can in fact recover the secret keys of

both users. See Section 3.6 for details of extending the negative results of Acar et al. and Cash et

al. to hybrid encryption. Koppula et al. [147] use indistinguishability obfuscation to show that

if indistinguishability obfuscation (iO) exists, then there exists a scheme that is IND-CPA secure

but not n-circular secure for any n ≥ 1.

Other Approaches. To give an indication of the breadth of research in the area, KDM security

has also been considered in such diverse settings as identity-based encryption (IBE) [10, 114], au-

thenticated and misuse-resistant encryption [42], programmable encryption [185, 21], bit encryp-

tion [177], point obfuscation [86] and fully homomorphic encryption [117, 76]: Gentry showed

how a fully homomorphic scheme for limited depth circuits can be ‘bootstrapped’ to work for

2This disallows the Acar et al. attack. Clearly the adversary must not be able to submit any of the key cycle to the
decryption oracle.
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circuits of arbitrary depth, if the original system is 1-circular secure and can compute its own

decryption circuit. Bellare, Meiklejohn and Thomson [45] develop a definition of KDM-secure

storage which incorporates both privacy and authenticity, and the authors seperately consider

RKA-secure signatures (see Chapter 4). Backes et al. [20] show that the OAEP encryption scheme

is IND-KDM-CPA secure in the random oracle model; we regard our work as advancing this

effort to analyse KDM security of deployed encryption schemes.

3.3 Security Models and Formalism

Notions for KDM security described in this chapter are relative to a function class Ψ, referred to

as plaintext-construction functions by Black et al. [65], which stipulates that the adversary is bound

to asking only queries ψ ∈ Ψ. For instance, if Ψ corresponds to the set of all constant functions,

notions equivalent to IND-CPA and IND-CCA emerge. The challenge is to devise schemes that can

be proven secure for a class Ψ that is as large as possible. However, to achieve any interesting

results we need to restrict this set to functions ψ(k) that act on the (vector of) decryption key(s) in

the system sk to those functions where the length of the output |ψ(sk)| does not depend on sk (to

ensure that the adversary cannot trivially win by simply looking at the length of the ciphertext).

This restriction is often referred to as length regularity. Black et al. formally regarded ψ modelled

as an algorithm in some fixed RAM model, however for the rest of this chapter we will instead

regard ψ as an arithmetic or Boolean circuit, which will imply that the output length of ψ is fixed

and automatically independent of its input.

The work of Black et al. introduced a formal definition for key-dependent message security

for chosen-plaintext attacks (henceforth IND-KDM-CPA), and their discussion considers the multi-

user symmetric case. Simply put, an adversary submits as challenge a function ψ and receives

an encryption of either ψ(sk) or of a dummy message, which is 0|ψ(sk)| if the message space is

bitstrings of arbitrary length, or a random message from the message space if the message space

is some fixed, finite space such as Zp. Camenisch et al. [82] introduced IND-KDM-CCA security, a

natural blend between IND-CCA and IND-KDM-CPA; this is the version we will focus on later in

the chapter. For our purposes there can be multiple keys in the system and, contrary to standard

IND-CPA security, for the IND-KDM security notions it is not possible to reduce (e.g. by hybrid

argument) to a single key or single query, since the reduction simply cannot simulate the KDM

queries without the decryption key.

Our syntax also differs from that of Black et al. as we make a distinction between parameter

and key generation; this approach is somewhat common in the multi-user PKE setting that we
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consider. Since ψ implements a function from a Cartesian product of secret key spaces to the mes-

sage space and these spaces can depend on the parameter generation (e.g. which cyclic group is

used for DLP-based systems), the security experiment incorporates a check that ψ is syntactically

valid (however we will henceforth drop explicit mention of it).

The majority of this chapter will consider definitions and results in the random oracle model

(ROM). When we are working in the ROM, the adversary A can of course access the random

oracle directly but in addition, the KDM function ψ ∈ Ψ may make a (number of) call(s) to the

random oracle.

We now give formal definitions for key-dependent message security, and explain the choices

made. We will present the chosen-plaintext version in the context of symmetric encryption be-

cause we will need it in Chapter 4, and the active IND-KDM-CCA definition for public key encryp-

tion as we will need that later in this chapter.

3.3.1 IND-KDM-CPA Security of Symmetric Encryption

Definition 3.1 details the multi-key variant of the IND-KDM-CPA security definition, in the con-

text of symmetric encryption. Restricting Ψ to the set of constant functions yields the standard

‘real-or-fake’ flavour of the IND-CPA game presented in Section 2.2.1, where the message space

is assumed to be arbitrary-length bitstrings {0, 1}∗. In Chapter 4 we will require an alternative

notion: the message space is fixed a priori, with the implicit assumption that messages are of

fixed length. In this scenario, the security experiment picks m0 ← M at the start and the line

m0 ← 0|m1| is removed. These notions are equivalent when the message space is bitstrings of

fixed length.

ExpIND-KDM-CPA[Ψ]-b
Σ, A (λ) :

pp← Pg(λ)
t← 0
b′ ← ANew, LRb(pp)
return b′

New():
t← t + 1
kt ← Kg(pp)
Append kt to k
return ⊥

LRb(ψ, i) :
if (ψ, i) 6∈ Ψ(pp, t) then

return  
m1 ← ψ(k)
m0 ← 0|m1|

c← Eki(mb)
return c

Figure 3.1: The general IND-KDM-CPA experiment for symmetric encryption.

Definition 3.1 (IND-KDM-CPA Security for Symmetric Encryption). Let Σ = (Pg,Kg,E,D) be a
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symmetric encryption scheme (with security parameter λ). Let Ψ be a collection of circuits that map a

(number of) key(s) to an element in the message space. Then the IND-KDM-CPA[Ψ] advantage of an

adversary A against Σ relative to key-dependent message attacks for circuit class Ψ is defined by

AdvIND-KDM-CPA[Ψ]
Σ, A (λ)

de f
=

∣∣∣∣ ∑
b∈{0,1}

(−1)b · Pr
[
ExpIND-KDM-CPA[Ψ]-b

Σ, A (λ) = 1
]∣∣∣∣

where the experiment ExpIND-KDM-CPA[Ψ]-b
Σ, A (λ) is given in Fig. 3.1.

This definition attempts to be as general as possible: the multi-key scenario is modelled by

having a vector k of private keys upon which the KDM function ψ can act. This means that when

adversary A makes a left-or-right query it must specify a key index along with ψ to receive an

encryption Eki(mb).

3.3.2 IND-KDM-CCA Security of Public Key Encryption

Introducing chosen-ciphertext queries invokes serious challenges in constructing secure schemes

in the key-dependent message framework, and Definition 3.2 details IND-KDM-CCA for public

key encryption. Note that some authors [25, 87, 129, 146] give a definition that is additionally

parameterised by the number of public/secret key pairs in the system (rather than allowing

the adversary to create an arbitrary number of key pairs), and consequently refer to notions as

n-KDM-CCA or similar. Again, if we desire a definition suitable for schemes with message spaces

that are not bitstrings then we choose m0 randomly from the message space accordingly.

ExpIND-KDM-CCA[Ψ]-b
Π, A (λ) :

pp← PGen(λ)
t← 0
FL← ∅
b′ ← ANew, LRb, Dec(pp)
return b′

New():
t← t + 1
(pkt, skt)← KGen(pp)
Append skt to sk
return pkt

LRb(ψ, i) :
if (ψ, i) 6∈ Ψ(pp, pk, t) then

return  
m1 ← ψ(sk)
m0 ← 0|m1|

c← Encpki
(mb)

FL← FL∪ {(c, i)}
return c

Dec(c, i) :
if (c, i) ∈ FL then

return ⊥
m← Decski(c)
return m

Figure 3.2: The general IND-KDM-CCA experiment for public key encryption. Removing oracle Dec yields the
IND-KDM-CPA experiment.
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Definition 3.2 (IND-KDM-CCA Security for Public Key Encryption). Let Π =

(PGen,KGen,Enc,Dec) be a public key encryption scheme (with security parameter λ). Let Ψ be a

collection of circuits that map a (number of) secret key(s) to an element in the message space. Then the

IND-KDM-atk[Ψ] advantage of an adversary A against Π relative to key-dependent message attacks for

circuit class Ψ and atk ∈ {CPA,CCA} is defined by

AdvIND-KDM-atk[Ψ]
Π, A (λ)

de f
=

∣∣∣∣ ∑
b∈{0,1}

(−1)b · Pr
[
ExpIND-KDM-atk[Ψ]-b

Π, A (λ) = 1
]∣∣∣∣

where the experiment ExpIND-KDM-CCA[Ψ]-b
Π, A (λ) is given in Fig. 3.2, and removing the decryption oracle

yields experiment ExpIND-KDM-CPA[Ψ]-b
Π, A (λ).

As in the IND-CCA setting we require a forbidden list FL that tracks the ciphertexts output by

the LR oracle and the associated key index, because the adversary is allowed to ask for decryp-

tions of such ciphertexts under all other secret keys.

3.3.3 Circular Security and Alternative Notions

A specific case of IND-KDM-atk[Ψ] security for public key encryption is n-circular security, which

is particularly useful in anonymous credential systems as described by Camenisch and Lysyan-

skaya [83]. In this setting, the set of key-dependent message functions is restricted to

Ψ := {ψs : ψs(sk) = sks}s∈[n] ∪ {ψm : ψm(sk) = m}m∈M

meaning selecting specific secret keys or messages in the message space. Some authors have

referred to this as CYC or n-CYC security.

Backes et al. [23, 20] used a different framework where the adversary does not have direct

access to the results of encryptions but instead can instruct the system to create keys, perform

encryptions and other operations etc. with the subsequent capacity to learn part of the system’s

state. This is a potentially stronger framework (see also Dent [102]) reminiscent of work on cryp-

tographic APIs (e.g. [149]). The PROG-KDM security definition provided by Unruh [185] also

allows for corruptions, but it is not easy to see how it can be satisfied in a non-programmable

random oracle setting (let alone the standard model). In the work in this chapter, we will contend

ourselves with the easier (and weaker) notion based on the original work by Black et al.
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3.4 Realising KDM Security

This section will give an overview of the most important results in achieving KDM security. It

took a number of years from the early definitions of KDM and circular security to the realisation

of schemes secure in the framework, and the consequent flurry of improvements and extensions.

3.4.1 Black et al.’s Random Oracle Scheme

As a proof of concept, Black et al. [65] gave a symmetric construction ver which is

IND-KDM-CPA[Ψ] secure for all length-regular Ψ in the random oracle model. The construction

Σver[l] = (Kg,E,D) for M = {0, 1}y uses a hash function H : {0, 1}2l → {0, 1}y. The scheme,

described in Fig. 3.3, is parameterised by the keylength l and has no parameter generation.

Σver.Kg(pp) :

k $←− {0, 1}l

return k

Σver.E(m, k) :

R $←− {0, 1}l

c← R||
(
H(k||R)⊕m

)
return c

Σver.D(c, k) :
if |c| < l then

return ⊥
R← c[1 . . . l]
c̃← c[(l + 1) . . . ]
m← H(k||R)⊕ c̃
return m

Figure 3.3: Black et al.’s KDM-CPA secure symmetric encryption scheme Σver.

The authors proved the scheme secure for all length-regular KDM functions, in the random or-

acle model. In addition, they presented a public key encryption scheme ΠVER[F ] parameterised

by a trapdoor permutation generator F , a scheme that was initially suggested by Bellare and

Rogaway in their seminal ‘Random Oracles are Practical’ paper [48]. The encryption algorithm,

parameterised by a function f chosen by F , computes c ← f(R)||(H(R)⊕m) where R is the ran-

domness used for encryption and H is the random oracle. Clearly this scheme neatly fits into the

hybrid framework, with protokey R and ephemeral key H(R). The authors stated optimistically:

“One expects that ΠVER[F ] is a KDM-secure encryption scheme if F is a secure trap-

door permutation. At the time of this writing, we have not written up a proof of

this. The above is only one natural construction; others would seem to work. In [83]

Camenisch and Lysyanskaya give a different scheme which they claim is ‘circular se-

cure’ (in the RO model), a notion that they define. One would expect their scheme to

be KDM secure as well, though we have not written up a proof of this.”

Black, Rogaway and Shrimpton [65], 2002.
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It is this discussion that we shall revisit later in the chapter.

3.4.2 Boneh et al.’s IND-KDM-CPA-Secure Scheme

At CRYPTO 2008, Boneh, Halevi, Hamburg and Ostrovsky (BHHO) [72] presented the first

scheme that was provably IND-KDM-CPA secure in the standard model. The motivating scenario

is closer to the circular security in anonymous credential systems as presented by Camenisch and

Lysyanskaya [83], and the breakthrough component of the work is an inherent ability of all par-

ties to create encryption cliques. The scheme is detailed in Fig. 3.4, maintaining notation where

possible. The scheme is secure3 with respect to affine functions over the group used, a function

class that notably includes the case of circular security.

ΠBHHO.PGen(λ) :

g $←− G \ {1}
pp← (G, g)
return pp

ΠBHHO.KGen(pp) :
l ← d3 log2 qe
g1 . . . gl

$←− G

(s1, . . . , sl)
$←− {0, 1}l

h← (gs1
1 . . . gsl

l )
−1

pk← (g1, . . . , gl , h)
sk← (gs1 , . . . , gsl )
return (pk, sk)

ΠBHHO.Enc(m, pk) :

r $←− Zq
c← (gr

1, . . . , gr
l , hr ·m)

return c

ΠBHHO.Dec(c, sk) :
(x1, . . . , xl , y)← c
(v1, . . . , vl)← sk
for i = 1 . . . l

if vi = 1 then
si ← 0

else
si ← 1

m← y ·∏i∈[l] xsi
i

return m

Figure 3.4: Boneh et al.’s KDM-CPA secure encryption scheme ΠBHHO

The details of this scheme are covered in more detail in Section 4.4.4.1, where we will use it

as a basis for constructing a scheme that is both KDM and RKA secure. For each 1 ≤ i ≤ l,

the (l + 1)-vector (1 . . . 1g1 . . . 1), where g is in position i and 1 everywhere else, will decrypt to

gsi so any party can generate encryptions of the secret key without knowledge of it. Since the

encryption wouldn’t actually output a ciphertext of this form, the authors move to an expanded

variant of their scheme where each (l + 1)-vector is a valid ciphertext and the simulator can cre-

ate a random encryption of the secret key. Each ciphertext and secret key contains l ← d3 log2 qe

group elements to ensure that the secret keys have sufficient entropy so that that during their

proof, the public key elements can be replaced by an item that is 1
q -uniform. The authors show

3In their paper Boneh et al. in fact define KDM security in terms of an adversary that attempts to distinguish ψ(sk)
from 0|ψ(sk)| however their construction and proofs refer to a message space which is an algebraic group.
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that their scheme is IND-KDM-CPA secure under the general k-linear assumption (recall that k = 1

corresponds to DDH and k = 2 corresponds to the DLIN assumption); the only change required

is l ← d(k + 2) log2 qe. The feature of the BHHO scheme that allows all parties to create en-

cryptions of the secret key did allow the authors to prove it IND-KDM-CPA secure, however it

also meant that this scheme could not be IND-KDM-CCA secure since an adversary could trivially

create useful decryption queries.

3.4.3 Camenisch et al.’s IND-KDM-CCA-Secure Scheme

Just a year after Boneh et al.’s breakthrough result, Camenisch, Chandran and Shoup [82] gave

a construction that turns any IND-KDM-CPA-secure scheme into an IND-KDM-CCA-secure

scheme using strongly one-time secure signatures and NIZKs. The work employs the Naor-Yung

double encryption paradigm [163]: encrypt message m with the IND-KDM-CPA-secure scheme and

also using an IND-CCA-secure scheme that supports labels and place the verification key of the

signature scheme in the label. Then, attach as an authentication tag a NIZK proof that says that ei-

ther the encryptor has created consistent encryptions, or they know a signature for the ciphertext;

the proof for consistency uses Groth-Sahai proofs [123].

3.5 Achieving KDM Security of Hybrid Encryption

The ubiquitous deployment of hybrid encryption makes it an excellent candidate for security

analysis, and before the work in this chapter there had been no thorough analysis of KDM security

in the context of hybrid encryption. As mentioned in Section 3.4.1, Black et al. indicated that they

believed a straightforward hybrid scheme to be secure in the random oracle model, yet did not

provide a proof. As it turns out, the proof of a general statement is challenging and requires

non-standard components. The standard approach for proofs regarding hybrid encryption is

to decouple the key encapsulated in the KEM and the one used in the DEM (triggering a ‘bad’

event where the adversary has managed to make the two align), and then argue that the DEM

is indistinguishable as it is run with a random key. In the KDM scenario this strategy no longer

works, as the reduction cannot simulate the adversary’s key-dependent queries, so our approach

is to move the analysis of this bad event from the key-dependent side to the key-independent

segment of the analysis.

We will first introduce some tools that will be employed during the proof, and then give a

deeper intuition of the proof techniques.
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Subsequently to this work, Chang, Xue and Zhang [88] showed that the Kurosawa-Desmedt

hybrid encryption scheme is KDM-CCA secure in the standard model with respect to the limited

KDM function ensemble introduced by Qin et al. [171]. This ensemble allows the adversary to

access encryptions of the difference between two secret keys, however it does not include encryp-

tions of individual secret keys.

3.5.1 Tools

We now describe two security notions that will be necessary further on: first a notion for DEMs

that is equivalent to IND-CCA, and secondly a formal definition of KDM security for hybrid

encryption in the random oracle model. For the remainder of this chapter we will assume that

the message space that we are dealing with is infinite bitstrings.

3.5.1.1 Restricted KDM Security of the DEM

We introduce a security notion for DEMs called IND-PKDM-CCA (‘Prior-KDM’), where an ad-

versary’s KDM capability is restricted to (encryptions of) functions of all ‘past’ DEM keys in the

system. The formal security game for IND-PKDM-CCA is depicted in Fig. 3.5. We will soon show

that this restricted form of KDM attacks is not all that useful to an attacker—the notion is in fact

equivalent to IND-CCA security for DEMs (cf. Def. 2.4). It is important to emphasise here that this

definition is somewhat of an artefact of the forthcoming proof, and there is little to suggest that it

would be useful in a wider context. Intuitively, the adversary has access to a left-or-right oracle,

and when she submits a key index i and a function ϑ, receives an encryption under ki of either the

function applied to all ‘past’ DEM keys m1 ← ϑ(k1, . . . , ki−1) or a dummy message m0 ← 0|m1|.

We write ϑ(ki−1) to represent ϑ(k1, . . . , ki−1) for ease of exposition.

Definition 3.3. Let DEM = (DEM.Pg,DEM.Kg,DEM.E,DEM.D) be a data encapsulation mechanism.

Then the IND-PKDM-CCA advantage of an adversary A against DEM is defined by

AdvIND-PKDM-CCA
DEM, A (λ)

de f
=

∣∣∣∣ ∑
b∈{0,1}

(−1)b · Pr
[
ExpIND-PKDM-CCA-b

DEM, A (λ) = 1
]∣∣∣∣

where the experiment ExpIND-PKDM-CCA-b
DEM, A (λ) is given in Fig. 2.8.

We now show that IND-PKDM-CCA security is equivalent to IND-CCA security for DEMs.

That IND-PKDM-CCA security implies IND-CCA security follows from standard relations between

different formulations of IND-CCA security, plus the fact that a non-key-dependent message can

be queried (in the KDM world) by using a constant function.
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ExpIND-PKDM-CCA-b
DEM, A (λ) :

pp← DEM.Pg(λ)
t← 0
FL← ∅
b′ ← ANew, LRb, D(pp)
return b′

New():
t← t + 1
kt ← DEM.Kg(pp)
return t

LRb(ϑ, i) :
if i 6∈ [t] then

return  
m1 ← ϑ(ki−1)
m0 ← 0|m1|

C← DEM.Eki(mb)
FL← FL∪ {(C, i)}
return C

D(C, i):
if (C, i) ∈ FL then

return  
m← DEM.Dki(C)
return m

Figure 3.5: The IND-PKDM-CCA security experiment for data encapsulation mechanism DEM. Here ϑ(ki−1)
indicates that the function ϑ can depend on all keys in range {k1, ..., ki−1}.

To see that IND-CCA security for DEMs implies the IND-PKDM-CCA notion we employ a hy-

brid argument.

Theorem 3.1. Let DEM be a data encapsulation mechanism. Then for adversary A, there exists an algo-

rithm A1 of comparable computational complexity such that

AdvIND-PKDM-CCA
DEM, A (λ) ≤ n ·AdvIND-CCA

DEM, A1
(λ) .

where λ is the security parameter and n is the number of keys in the DEM system.

Proof:

We seek a contradiction, by assuming that DEM is IND-CCA secure but not IND-PKDM-CCA

secure, so there exists an algorithm A that breaks IND-PKDM-CCA. If we have n + 1 keys in the

system, then we have n + 1 hybrid experiments Hyb-j as described Fig. 3.6 (for j ∈ {0, ..., n}).

In the j = 0 hybrid we have i > 0 (∀i) so this refers to ExpIND-PKDM-CCA-0
DEM, A (λ), and for j = n we

have i ≤ j (∀i) which always returns an encryption of m1 corresponding to ExpIND-PKDM-CCA-1
DEM, A (λ),

which gives rise to equation (3.1).

AdvIND-PKDM-CCA
DEM, A (λ)

de f
=

∣∣∣∣ ∑
b∈{0,1}

(−1)b · Pr
[
ExpIND-PKDM-CCA-b

DEM, A (λ) = 1
]∣∣∣∣

= Pr
[
ExpHyb-n

DEM, A(λ) = 1
]
− Pr

[
ExpHyb-0

DEM, A(λ) = 1
]

(3.1)

≤ n ·AdvIND-CCA
DEM, A1

(λ) (3.2)
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ExpHyb-j
DEM, A(λ) :

pp← DEM.Pg(λ)
t← 0
FL← ∅
b′ ← ANew, LRb, D(pp)
return b′

New():
t← t + 1
kt ← DEM.Kg(pp)
return t

LRb(ϑ, i) :
if i 6∈ [t] then

return  
m1 ← ϑ(ki−1)
m0 ← 0|m1|

if i ≤ j then
C← DEM.Eki(m1)

else
C← DEM.Eki(m0)

FL← FL∪ {(C, i)}
return C

D(C, i):
if (C, i) ∈ FL then

return  
m← DEM.Dki(C)
return m

Figure 3.6: Hybrid games Hyb-j for DEM to prove Thm. 3.1. Again ϑ(ki−1) indicates that the function ϑ can depend
on all keys in range {k1, ..., ki−1}.

Since we made the assumption that A breaks IND-PKDM-CCA, A can distinguish at least one

gap between two hybrids in the sum. If we assume that A can distinguish between Hyb-j∗ and

Hyb-(j∗-1) for some j∗, then we need to build a reduction A1 that can simulate all queries, and

thus can compute m1 (and subsequently m0) by itself, and feed into the IND-CCA oracle and

win the game. That is to say, A’s advantage in distinguishing between Hyb-j∗ and Hyb-(j∗-1) is

greater than 1/n ·AdvIND-PKDM-CCA-b
DEM, A (λ). Utilising this fact, we create an algorithm A1 attacking

the IND-CCA property of DEM, as detailed in Fig. 3.7, to prove equation (3.2). The key point here

is that the reduction A1 knows all but one key, namely kj∗ , and it plays its own IND-CCA game

against this key. Reduction A1 creates all the keys except for kj∗ , meaning that A1 needs to use

a counter z to correctly respond to A’s calls to New. For i < j∗ it is possible for the reduction to

simlulate m1 correctly using ki−1. For i > j∗ we use the length regularity condition on ϑ to create

the m0 value to feed into the hybrids; note that in many other reductions and definitions in this

thesis the ‘real’ message m1 is already created so we can use 0|m1| however this is not the case here

so we abuse notation and take |ϑ| to mean the length of the output of ϑ. Since we know A can

beat IND-PKDM-CCA for i = j∗, we make the input values to the IND-CCA game’s LR oracle be

the same as the m1 and m0 values used in the IND-PKDM-CCA game, ensuring that the reduction

captures this correctly.
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A1 playing ExpIND-CCA-b
DEM, A1

(λ):
pp← DEM.Pg(λ)
z← 0
for i ∈ [n] \ {j∗} do

ki ← DEM.Kg(pp)
b′ ← ANew, LRb, D(pp)
return b′

D(C, i):
if i 6∈ [n] then

return  
if i = j∗ then

call m← IND-CCA.D(C)
else

m← DEM.Dki(C)
return m

New():
z← z + 1
return z

LRb(ϑ, i):
if i < j∗ then

m1 ← ϑ(ki−1)
C← DEM.Eki(m1)

if i > j∗ then
m0 ← |ϑ|
C← DEM.Eki(m0)

if i = j∗ then
m1 ← ϑ(ki−1)
m0 ← 0|m1|

call C← IND-CCA.LR(m0, m1)
return C

Figure 3.7: Description of reduction A1 used to prove (3.2). When A1 runs A, it needs to create an environment
ExpIND-PKDM-CCA-b

DEM, A . The “call C” line details that A calls the IND-CCA oracle LR, receiving an encryption of mb
under the correct IND-CCA challenge key k. The line “call m” indicates that A calls the decryption oracle of the
IND-CCA game on C.

3.5.1.2 KDM Security for Hybrid Encryption

We now give a full definition for KDM security of a hybrid encryption scheme in the random

oracle model. Fig. 3.8, which is an expanded version of Fig. 3.2, formalises this specification.

This definition is in the random oracle model (the oracle H(·) employs lazy sampling). We write

‘if ∃hk such that (k, hk) ∈ Hlist’ here to denote H doing a table lookup, but for ease of exposition

we will write ‘if (k, hk) ∈ Hlist’ throughout the rest of this thesis; the column(s) in which H is

searching will be clear from context. Note that the adversary can make a number of queries to

the random oracle directly, and also it can provide functions that query the random oracle. This

reflects the scenario where the adversary’s key-dependent message functions Ψ are circuits with

gates that call the random oracle. The adversary is allowed to query decryptions of the challenge

ciphertexts under different public keys than the ones generated by LRb, and this restriction is

dealt with by the list FL. This definition assumes that the message space is bitstrings of arbitrary

length, and that the functions ψ ∈ Ψ are efficiently computable.

3.5.2 Achieving KDM-CCA Security of Hybrid Encryption

We are now in a position to state the main result of this chapter. Let Hyb =

(Hyb.PGen,Hyb.KGen,Hyb.Enc,Hyb.Enc) be a hybrid encryption scheme and let A be an adver-

sary. In the hybrid setting there are two types of keys present: the private key of the KEM and
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ExpIND-KDM-CCA-b
Hyb, A (λ):

pp← PGen(λ)
t← 0
sk← ()
Hlist, FL← ∅
b′ ← ANew,H,LRH

b ,DecH(pp)
return b′

New():
t← t + 1
(pkt, skt)← KGen(pp)
Append skt to sk
return pkt

H(k):
if ∃hk such that (k, hk) ∈ Hlist then

return hk
else

hk
$←− {0, 1}λ

Hlist ← Hlist ∪ {(k, hk)}
return hk

LRH
b (ψ, i):
if ψ 6∈ Ψ(pp, pk, i) then

return  
m1 ← ψH(sk)
m0 ← 0|m1|

(ω, k)← KEM.Encappki
()

hk ← H(k)
Cb ← DEM.Ehk

(mb)
FL← FL∪ {(ω, Cb, i)}
return (ω, Cb)

DecH(ω, C, i):
if (ω, C, i) ∈ FL then

return  
k← KEM.Decapski

(ω)
if k = ⊥ then

return ⊥KEM

hk ← H(k)
m← DEM.Dhk

(C)
if m =⊥ then

return ⊥DEM

return m

Figure 3.8: The IND-KDM-CCA indistinguishability experiment made explicit for multi-key hybrid encryption in
the random oracle model.

the ephemeral key for the DEM, where knowledge of the private KEM key leads to immediate

recovery of the ephemeral key. Since we regard Hyb as a public key encryption scheme in the

context of key-dependent messages, it follows from Fig. 2.5 that it is on the private key of the

KEM that key-dependent messages (that are input to the DEM) will depend.

We show that any KEM/DEM system that has a TYPE-1 µOW-CCA KEM and an IND-CCA

DEM gives an IND-KDM-CCA[Ψ]-secure hybrid encryption scheme provided that the key deriva-

tion function KDF is modelled as a random oracle. In particular we allow the functions in Ψ to

call the random oracle. By this we mean that when modelled as circuits, ψ ∈ Ψ can have gates

that explicitly call the random oracle. The µ indicates that there is a choice of multiple targets

(KEM ciphertexts) to invert. Recall that our modelling of functions in ψ ∈ Ψ as circuits implicitly

implies that ψ is length-regular, meaning that given pk and ψ, one can uniquely determine the

length of ψ(sk) (this is the same restriction as made by Black et al. [65] and Backes et al. [20]).

This result is formalised in Theorem 3.2. In Theorem 3.4 we provide an analogous, but signifi-

cantly less tight result for TYPE-2 KEMs; in the security proof when an adversary makes a query

H(k) to its random oracle, the checking oracle allows the reduction to determine whether this k

corresponds to some challenge encapsulation ω.
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The event CollKEM(qLR, λ), parameterised by the number of oracle queries the adversary

makes and the security parameter, implies a collision in the ephemeral key output by the KEM,

which is extremely unlikely to occur (if it were, this would also adversely affect the KEM’s one-

wayness).

Proof intuition. In our proof we make use of the game-playing technique [183, 51] and intro-

duce a sequence of games, as described in Fig. 3.9, and the games themselves are specified in

Fig. 3.11. Apart from the simple, syntactical transitions (3.3) and (3.4), there are five game-hops to

bound A’s advantage distinguishing ExpIND-KDM-CCA-1
Hyb, A (λ) and ExpIND-KDM-CCA-0

Hyb, A (λ). These are

denoted with solid lines. Here (3.5) and (3.6) are identical-until-bad hops. We define bad to be

the event that the adversary queries the random oracle on a protokey k previously used by the

left-or-right oracle.

G0 : H = F, LR1
DEM.Ehk

(m1)

G1 : H 6= F, LR1
DEM.E fk(m1)

G5 : H = F, LR0
DEM.Ehk

(m0)

G4 : H 6= F, LR0
DEM.E fk(m0)

ExpIND-KDM-CCA-1
Hyb, A (λ) ExpIND-KDM-CCA-0

Hyb, A (λ)

G2 : H 6= F(PRF), LR1
DEM.E fk(m1)

G3 : H 6= F(PRF), LR0
DEM.E fk(m0)

(3.5)

AdvIND-PKDM-CCA
DEM, A2

(3.11)

(3.3) (3.4)

(3.6)

(3.9) (3.10)(3.8) (3.7)

AdvIND-PKDM-CCA
DEM, A3

(3.13)

Figure 3.9: Diagrammatic overview of game hops used to prove Eqn. 3.2

So far we have utilised standard tools: use the security of the KEM to decouple the key en-

capsulated by the KEM and the one used by the DEM (where Dent [99] used the same bad event

in his analysis of IND-CCA secure KEMs), followed by a straightforward indistinguishability hop

to the DEM. Unfortunately, with the introduction of key-dependent messages the latter hop has

become considerably more challenging; moreover bounding the bad event in the presence of key-

dependent messages is troublesome. To overcome these challenges, our proof uses a number of
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techniques.

To invoke the DEM’s indistinguishability, the standard reduction would pick all the KEM key

pairs and use these to simulate the KEM part of the hybrid encryption scheme (to run the ad-

versary against the entire PKE). Since the reduction itself is playing the DEM indistinguishability

game, it can use its DEM oracles to complete the DEM part (as the protokey encapsulated by the

KEM and the ephemeral key used by the DEM are decoupled at this point). However if an ad-

versary (against the PKE) may make queries with KDM functions that call the random oracle, it

could in principle submit functions that decrypt past key encapsulations and, with the help of the

random oracle, turn them into past DEM keys (effectively, the KDM function can cause the event

that would normally have triggered bad). Since the reduction does not know the actual DEM keys

being used, it suddenly finds itself in a tight spot and a direct hybrid argument (to get rid of past

DEM keys) does not seem to work.

Our solution is to leverage the newly introduced IND-PKDM-CCA notion (Section 3.5.1.1).

Since we model the KDM functions as circuits, it turns out to be possible to describe a compiler

that turns a KDM function against the PKE into one against the DEM. There is however one

further complication. For the public key scheme, we model the hash function as a random oracle

and the KDM function has access to the random oracle. Yet, for the DEM scheme there is no random

oracle present, which would suggest that the KDM function in the DEM world should not depend

on one either. Moreover, it is not possible to predict on which values the KDM function would

call the random oracle. Thus, when the random oracle is implemented by the reduction using

lazy sampling, though it could hard-code the hash list so far into the circuit, the simulation might

fail once fresh values are requested. To handle this, we (partly) model the random oracle as a

pseudorandom function (rather than using lazy sampling). This provides the reduction a succinct

description of the entire random oracle and it can safely embed the key to the pseudorandom

function in the circuit used in the IND-PKDM-CCA game. The introduction of a PRF requires two

additional hops, in equations (3.7) and (3.9).

The bounding of event bad is relatively easy on the m0-side of the diagram, as one does not

need to know the KEM’s private key sk in order to simulate the data encapsulations: bad is

bounded in G3 by AdvµOW-CCA
KEM, A1

. However, on the m1-side of the diagram it is less obvious how to

bound the bad event, since it is not possible to simulate the key-dependent values. The solution is

to move the bad event from the m1-side to the m0-side using the separate hop (3.13), which bounds

the difference between Pr [bad] in games G2 and G3. This incurs a second AdvIND-PKDM-CCA
DEM, A2

term

to the bound.
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Game Oracle Oracle Model Message

Exp1 H LS m1

G0 H = F LS m1

G1 H 6= F LS m1

G2 H 6= F PRF m1

G3 H 6= F PRF m0

G4 H 6= F LS m0

G5 H = F LS m0

Exp0 H LS m0

Figure 3.10: Description of game hops used to prove Eqn. 3.2.

Bounding of the bad event breaks down if distinct queries to the LR oracle made identical

KDF queries, meaning that there are collisions in the KEM. We bound this event by the separate

quantity CollKEM(qLR, λ). It might be possible to avoid this technicality by changing the scheme

so it hashes H(ω, k) instead of just H(k).

It may be of assistance to envision this game-hopping progression as a tree rather than the U-

shaped left-or-right depiction in Fig. 3.9. From the root node representing ExpIND-KDM-CCA-b
Hyb, A there

is one child representing G0 and G5, then this node has one child representing G1 and G4.From

here this node fans out to two child nodes: one representing the hop from modelling the RO as

lazy sampling to PRF, and another hop to depict the tracking of the event bad. The hop described

in equation 3.13 coalesces these two child nodes into one, completing the indistinguishability

argument.

Interpretation. When it comes to hybrid schemes, our result is very general. Indeed, it even

generalises the work by Dent [99] (restricted to IND-CPA-security) as we can deal with key encap-

sulation schemes where the protokey is derived from the randomness in a hard-to-invert fashion.

For instance, if Gp is a cyclic group of order p with generator g, an obvious Diffie-Hellman-

inspired KEM would pick private key x ∈ Zp, set public key gx and compute a key encapsulation

by generating a random r ∈ Zp, releasing gr as the encapsulation of k = grx. Our theorems can

deal with this situation (where the KEM is TYPE-1 iff DDH is easy in Gp), but it is not covered by

the KEMs given by Dent.

Black et al. [65] suggest the use of a variant of TDP-KEM combined with a one-time pad as

a KDM-secure public key scheme in the random oracle model. Here TDP-KEM is shorthand

for trapdoor-permutation-KEM, where the public and private key of the KEM match that of the

trapdoor permutation and key encapsulation takes a random k in the domain of the trapdoor
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permutation, applies the permutation to encapsulate and outputs H(k) as ephemeral key, or, in

the hybrid model with explicit key derivation function (Fig. 3.8) the KEM would output k as

ephemeral protokey.

As a result of our theorem, if we restrict this scheme to any fixed-size message length, security

is guaranteed. Strictly speaking, for arbitrary length messages, we would need to allow signalling

of (an upper bound on) the message length to the random oracle so it can output the required

number of bits. This is primarily a syntactical issue that we did not feel sufficiently important

to incorporate into our main framework. Since TDP-KEM has an obvious checking oracle, we

regard our Theorem 3.2 settling the problem left open by Black et al.

Theorem 3.2. Let Hyb be a hybrid PKE scheme (Fig. 2.5) with a TYPE-1 KEM, with the key derivation

function modelled by a random oracle. Let Ψ be any set of functions, including those which have random

oracle access. Let F be an arbitrary family of pseudorandom functions. Then for any adversary A calling

LR at most qLR times, there exists algorithms A1 and A2 (of comparable computational complexity) such

that

AdvIND-KDM-CCA[Ψ]
Hyb, A (λ) ≤ 2 ·AdvµOW-CCA

KEM, A1
(λ) + 2 ·AdvIND-PKDM-CCA

DEM, A2
(λ)

+ 2 · CollKEM(qLR, λ) + 4 ·AdvPRF
F, A(λ) .

This theorem, combined with Theorem 3.1, yields the following corollary relating to standard

definitions.

Corollary 3.3. As above, and let n be the number of DEM keys in the system, then:

AdvIND-KDM-CCA[Ψ]
Hyb, A (λ) ≤ 2 ·AdvµOW-CCA

KEM, A1
(λ) + 2n ·AdvIND-CCA

DEM, A2
(λ)

+ 2 · CollKEM(qLR, λ) + 4 ·AdvPRF
F, A(λ) .

Proof: [of Theorem 3.2]

Fig. 3.8 contains a description of the security games ExpIND-KDM-CCA-b
Hyb, A (λ) that are obtained by

specifying the general PKE IND-KDM-CCA games for hybrid encryption where the key derivation

function is modelled by a random oracle H. Certain lines are only applicable in some of the games,

and this is indicated in the figure. For simplicity, we omit explicit mention of the class Ψ in the

description of the security experiments. As is customary, we use lazy sampling to define H’s

behaviour, maintaining a list Hlist of query pairs (k, hk) produced by H so far.
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ExpIND-KDM-CCA[Ψ]-b
Hyb, A (λ):

pp← PGen(λ)
t← 0
sk← ()

x $←− {0, 1}λ

Hlist,Flist, FL← ∅
b′ ← ANew,H,LRb,Dec(pp)

return b′

New():
t← t + 1
(pkt, skt)← KGen(pp)
append skt to sk
return pkt

LRb(ψ
H, i):

if ψH 6∈ Ψ(pp, pk, i) then
return  

m1 ← ψ(sk)
m0 ← 0|m1|

(ω, k)← KEM.Encappki
()

hk ← F(k)
Cb ← DEM.Ehk

(mb)
FL← FL∪ {(ω, Cb, i)}
return (ω, Cb)

H(k):
if (k, hk) ∈ Hlist

return hk
if (k, hk) ∈ Flist

set bad← true

return hk

hk
$←− {0, 1}λ

Hlist ← Hlist ∪ {(k, hk)}
hk ← PRFx(k)

Hlist ← Hlist ∪ {(k, hk)}
return hk

F(k):
if (k, hk) ∈ Flist

return hk
if (k, hk) ∈ Hlist

set bad← true

return hk

hk
$←− {0, 1}λ

Flist ← Flist ∪ {(k, hk)}
return hk

Dec(ω, C, i):
if (ω, C, i) ∈ FL then

return  
call k← Decap(ω, i)
if k =⊥ then

return ⊥KEM

hk ← HF(k)
m← DEM.Dhk

(C)
if m =⊥ then

return ⊥DEM

return m

HF(k):
if (k, hk) ∈ Flist

return hk
if (k, hk) ∈ Hlist

return hk

hk
$←− {0, 1}λ

hk ← PRFx(k)
Hlist ← Hlist ∪ {(k, hk)}
return hk

Figure 3.11: Security games used for proof Theorem 3.2. Games G0 and G5 imply that H = F (as far as I/O behaviour
is concerned). Games G1–G4 have H 6= F as two independently sampled random oracles. Games G2 and G3 model
the random oracle as a PRF, rather than using lazy sampling. Games G0, G1 and G2 correspond to b = 1, whereas
Games G3, G4 and G5 correspond to b = 0. Items within thin boxes refer to code that is only used in G2 and G3,

items within thick boxes are only for G0 and G5, and dashed boxed items refer to games G0, G1, G4 and G5.

G0 and G5: Re-writing the security game. In the game there are four distinct places where

queries to H could be made. Firstly, the adversary A can make direct H queries; any query to
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the oracle LRb will require one ‘direct’ call to H for the key derivation and may include a number

of indirect calls as part of the specified function ψ; and finally as a decryption query for key

derivation. For the purpose of our game-hopping approach, we need to be able to make a clear

distinction between these cases. To this end, we introduce two additional oracles: F and HF. We

make a syntactical change so that LRb always uses F for its key derivation, and Dec always uses

HF. Oracle HF synchronises with items that are added to lists for both H and F. By ensuring that F,

H and HF implement the same random oracle (i.e. are functionally equivalent, exhibiting exactly

the same input/output behaviour), the changed games are equivalent to the original security

experiments.

In Fig. 3.11, G0 corresponds to such a modified, yet equivalent game, in this case for b = 1.

The b = 0 sibling game is called G5. In both of these games the oracles H and F each maintain

their own list, Hlist, respectively Flist, yet control code ensures (a) that these two lists can not

contain k overlap in the sense that no triple (k, hk, h′k) can exist for which both (k, hk) ∈ Hlist and

(k, h′k) ∈ Flist and (b) that the oracles H and F will look up elements from the other oracle’s list,

thus ensuring synchronisation. As a result of this design, F and H are functionally equivalent

to each other in the games G0 and G5, implying that from an adversary’s point of view G0 is

equivalent to ExpIND-KDM-CCA-1
Hyb, A (λ), or

Pr
[
G0
A = 1

]
= Pr

[
ExpIND-KDM-CCA-1

Hyb, A (λ) = 1
]

. (3.3)

Similarly we claim that G5 is equivalent to ExpIND-KDM-CCA-0
Hyb, A (λ), so

Pr
[
G5
A = 1

]
= Pr

[
ExpIND-KDM-CCA-0

Hyb, A (λ) = 1
]

. (3.4)

G1 and G4: Decoupling the Oracles. We proceed by a more interesting hop, where we make F

and H independent. The oracles F and H are modified such that when a query is made to one

oracle (say H) that has previously been queried to the other (F) then a fresh value is still created

(and added to Hlist). Moreover, in this case the flag bad is set to true first. This is described in

Fig. 3.11, where the new G1 corresponds to the b = 1 case and G4 to the b = 0 case. By syntactical

inspection, G0 and G1 are identical up to the point at which the flag is set, enabling application of

the fundamental lemma of game-hopping (see Section 2.1.1):

∣∣∣Pr
[
G0
A = 1

]
− Pr

[
G1
A = 1

]∣∣∣ ≤ Pr [A sets bad in G1] (3.5)
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and in a similar vein G4 and G5 are identical until bad, so

∣∣∣Pr
[
G4
A = 1

]
− Pr

[
G5
A = 1

]∣∣∣ ≤ Pr [A sets bad in G4] . (3.6)

(To bound the difference between games G4 and G5 a standard hop involving the KEM’s IND-CCA

advantage is an alternative.)

The hop between the key-dependent scenario and the non-key-dependent world will be prob-

lematic later on due to the fact that if ψ calls the random oracle, the simulation cannot correctly

answer these queries. This is because it does not know the values of the DEM keys in the system,

only their indices. To counter this we add two additional hops in which we use a PRF rather than

lazy sampling to model our random oracle. As stated earlier, we regard the ψ that acts on sk (of

the KEM) as a circuit, with some gates that call the RO. There is a (one-to-one) mapping from ψ

circuits (which act on sk) to ϑ circuits (that act on the DEM keys). We assume that there is some

kind of ‘safe storage’ of all DEM keys. In this manner it is possible to track the past RO queries

that are made by these ϑ functions. These H gates will have some inputs, and will check if the

input string corresponds to some Hlist entry, or an Flist entry. If it is an F query (i.e. made by an LR

call), then assign a ki to some of the output wires (since the game does not know the ki but it can

use them). However the issue is that if A gives a circuit ψ that makes an H query in a gate, and

subsequently makes another H query, then the Hlist lists will not be synchronised.

G2 and G3 Using a PRF to model the Random Oracle. To counter this, consider H as a pseudo-

random function PRF : {0, 1}λ ×KDEM → {0, 1}λ chosen from some PRF-secure function family

F, parameterised by some seed x ∈ {0, 1}λ, rather than using lazy sampling. Denote PRFx(k) as

being the PRF applied to input k with seed x. The gates for H now store the Flist, and when calls

to F are made we can wire up the corresponding ki values. When the function makes H calls, we

simply implement the PRF on the given input. To make this subtle change, we need to implement

another two (symmetrical) game hops in which we change the way we model the random oracle

from lazy sampling (LS) to using a PRF. The difference between A’s advantage against G1 and its

advantage against G2 is bounded by A’s advantage in breaking the PRF:4

Pr
[
G1
A = 1

]
− Pr

[
G2
A = 1

]
≤ AdvPRF

F, A(λ) (3.7)

Pr [A sets bad in G1]− Pr [A sets bad in G2] ≤ AdvPRF
F, A(λ) (3.8)

4The more usual hop in a proof would be to replace a pseudorandom function by a perfectly random function,
whereas here the perfect object is substituted by a computational approximation—for bounding the difference between
the two worlds the ‘direction’ is irrelevant.
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and likewise the difference between A’s advantage against G3 and its advantage against G4 is

bounded by the PRF advantage:

Pr
[
G3
A = 1

]
− Pr

[
G4
A = 1

]
≤ AdvPRF

F, A(λ) (3.9)

Pr [A sets bad in G4]− Pr [A sets bad in G3] ≤ AdvPRF
F, A(λ) (3.10)

Now we are in a position to consider the hop between games G2 and G3, i.e. from the key-

dependent scenario to the key-independent side. In game G2 the response from the left-or-

right oracle is given to the adversary by LR1, resulting to an encryption of m1 = ψ(sk) in

ExpIND-KDM-CCA-1
Hyb, A (λ), whereas in game G3, the left-or-right oracle is implemented by LR0, lead-

ing to an encryption of m0 = 0|ψ(sk)| (as in ExpIND-KDM-CCA-0
Hyb, A (λ)). To show that games G2 and

G3 are distinguishable only with small probability we introduce an adversary A2 that attacks the

IND-PKDM-CCA property of the DEM, and show that as long as the DEM is secure in this respect,

then the output of the games is indistinguishable. More precisely,

Pr
[
G2
A = 1

]
− Pr

[
G3
A = 1

]
≤ AdvIND-PKDM-CCA

DEM, A2
(λ) (3.11)

The consequence of F and H being independently sampled oracles is that in games G2 and G3 the

encapsulated key and the key used for the DEM are effectively decoupled (as the adversary has

no direct access to F). This decoupling allows us to use a DEM hop to prove equation (3.11), and

this reduction is detailed in Fig. 3.12. In the game that A2 plays, it runs A as a black-box that

returns a valid ψ, then A2 creates messages m0 and m1 in the same way that the LRb oracle does

in the other games. However, where in the games G2 and G3 there was an explicit oracle F that

provided linkage between a protokey k output by the KEM and its corresponding ephemeral key

hk actually used by the DEM, in the simulation A2 uses its own oracles to create the keys hk in

the IND-PKDM-CCA experiment it itself is playing. To get this to go through we need to move the

function ψ that acts on the KEM secret keys to the function ϑ, that acts upon DEM keys. The set

kϑ contains all the DEM keys that are currently in the system. To simulate the DEM hop we need

to make sure that the ϑ circuit in the IND-PKDM-CCA game is consistent with the circuit that acts

on all of the DEM keys in the system in the PKE game. Every timeAmakes an F query in its PKE

game we need to add that key to the set of keys that ϑ can act upon.

In this decoupled scenario, reduction A2 generates the (pk, sk) pairs itself. The seed of the

PRF is then ‘hardwired’ into the gates of ϑ so whenA’s KDM function makes a RO call, it is dealt

with by this setup. This allows the simulation to go through without A2 actually knowing which
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A2 playing ExpIND-PKDM-CCA-b
DEM, A2

(λ):
pp← KEM.PGen(λ)
t← 0
sk← ()

x $←− {0, 1}λ

Hlist,Flist, FL← ∅
b′ ← ANew,H,LRb,Dec(pp)
return b′

New():
t← t + 1
(pkt, skt)← KGen(pp)
append skt to sk
return pkt

H(k):
if (k, hk) ∈ Hlist

return hk
hk ← PRFx(k)
Hlist ← Hlist ∪ {(k, hk)}
return hk

LRb(ψ
H, i):

ψH → ϑ:
for RO query k:

if (k, j) ∈ Flist
Incorporate kj into ϑ

else
h← PRFx(k)

(ω, k)← KEM.Encappki
()

if (k, hk) ∈ Hlist then
ABORT

if (k, j) ∈ Flist then
call C← LR(j, ϑ)

else
call j← New()
Flist ← Flist ∪ {(k, j)}
call C← LR(j, ϑ)

FL← FL∪ {(ω, C, i)}
return (ω, C)

Dec(ω, C, i):
if (ω, C, i) ∈ FL then

return  
k← Decapski

(ω)
if (k, j) ∈ Flist

call m← D(C, j)
else

hk ← H(k)
m← DEM.Dhk

(C)
return m

Figure 3.12: Description of reduction A2 used to prove (3.11). When A2 runs A, it needs to create an environment
ExpIND-KDM-CCA

Hyb, A . It makes New queries and specifies the public key index i in its LRb queries. The messages m0
and m1 and also ω and k are ’created’ just as they are in normal LRb, whereas hk is virtually set to whatever value is
used in the game A2 itself is playing by A2’s calls to New, LR and D (from ExpIND-PKDM-CCA

DEM, A2
). Note that A2 need

not know hk for this simulation.

values ki are queried to the RO. The messages m1 and m0 are then ‘created’ just as they are inA’s

LR queries. Now A2 calls its own oracles LR, New and Dec (in the IND-PKDM-CCA game) and

returns a pair (ω, Cb) as A would have expected.

The LR oracle in the simulation translates the ψ into a ϑ. If this function makes an oracle call

ki, the simulation checks Hlist for an entry containing ki, and if present returns the corresponding

hk. If the value is on Flist then the simulation will know the index of the key but not the value

itself, and thus a PRF gate can be called to retrieve the corresponding hk. If it is on neither list,

simply initiate PRF on ki.

Since the adversary A has no direct access to F this indirect simulation of F is perfect. As a
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result, if A2 is in ExpIND-PKDM-CCA-1
DEM, A2

(λ) then A will behave towards A2 exactly as it would do in

G2, and similarly if A2 is in ExpIND-PKDM-CCA-0
DEM, A2

(λ) then A will behave as in G3, proving (3.11).

All that remains is bounding the probability of the bad event in games G2 and G3, followed by

a collection of the various terms into a single bound on the advantage.

G3: Analysing the event bad. The analysis of the bad event in game G3 is easiest, as here the

adversary is given an encryption of a zero string which is clearly not key-dependent (since the

adversary directly specifies its length). By simple code inspection, it emerges that A can set the

flag bad to true in two places in G3: either in a direct oracle query to H on a k that has already

been queried to F by LR0; or if LR0 calls F on a k that has previously been queried to H directly by

A. Intuitively, the former constitutes a break against the one-wayness of the KEM, and the latter

should just be very unlikely (although we actually bound it by a break as well to avoid the need

for an additional assumption on the way k as output by KEM is distributed).

Fig. 3.13 details reduction A1, for which

Pr [A sets bad in G3] ≤ AdvµOW-CCA
KEM, A1

(λ) + CollKEM(qLR, λ). (3.12)

First we observe that if Enc (internally) creates a pair (ω, k) and (ω′, k′) satisfying k = k′ yet

ω 6= ω′ the simulation will with high probability produce F(k) 6= F(k′), indicating that in that

case it is not perfect. However, the event that such a pair is created by a KEM ought to be small.

We define CollKEM(q, λ) as the probability this happens in q queries to the encapsulation oracle.

In order to simulate correctly, we require that the reductions can make as many New calls as

A can. To do this we can simply set an upper bound on the number of New calls that A makes,

and then restrict the number of callsA1 can make by this figure. The value z labels the DEM keys

that are brought into the system by A’s calls to its Encap oracle.

If a collision as above does not happen then A1 creates a perfect simulation of G3 as long as

bad is not set. Moreover, at the very point a query is made that would have caused bad to be

set in G3, the reduction A1 uses its KEM-checking oracle KEM.Chk to detect that bad was set and

retrieves the corresponding key k, plus the index of the Enc query this key belongs to.

As a technical aside, to simulate G3 the reduction needs to answer the adversary A’s LR0

queries. Since A gives out ψ and expects an encryption of 0|ψ(sk)|, it is necessary (in order to sim-

ulate correctly) for A1 to learn |ψ(sk)| without knowing sk. Here the length regularity condition

is required: given pk and ψ, we can determine |ψ(sk)| and thus simulate LR0.
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A1 playing ExpµOW-CCA
KEM, A1

(λ):
receive pp
z← 0
Hlist,Flist, FL← ∅
b′ ← ANew,H,LR,Dec(pp)
return ⊥

New():
call pkt ← New()
pk← pk∪ pkt
return pkt

H(k):
if (k, hk) ∈ Hlist

return hk
for (ω, h, j) ∈ Flist

if KEM.Chk(ω, k) = true then
exit (j, k)

hk
$←− {0, 1}λ

Hlist ← Hlist ∪ {(k, hk)}
return hk

LR(ψ, i):
m0 ← 0|ψ(sk)|

z← z + 1
call ω ← Encap(i)
hk ← FSIM(ω, i)
C← DEM.Ehk

(m0)
FL← FL∪ {(ω, C, i)}
return (ω, C)

FSIM(ω, i):
for (k, hk) ∈ Hlist do

if KEM.Chk(ω, k) = true then
exit (z, k)

if (ω, h, j) ∈ Flist
hk ← h

else
hk

$←− {0, 1}λ

Flist ← Flist ∪ {(ω, hk, z)}
return hk

Dec(ω, C, i):
if (ω, C, i) ∈ FL then

return  
call k← Decap(ω, i)
if k =⊥ then

return ⊥KEM

hk ← H(k)
m← DEM.Dhk

(C)
if m =⊥ then

return ⊥DEM

return m

Figure 3.13: Description of reduction A1 used to prove (3.12). When A1 runs A, it needs to create an environment
ExpIND-KDM-CCA

Hyb, A . The line “exit (j, k)” indicates that A1 at that point terminates running A and returns (j, k)
to its own environment (as guess for kj). As long as Enc (internally) does not create a pair (ω, k) and (ω′, k′) with
k = k′ yet ω 6= ω′ the simulation is perfect.

G2 and G3: Deferring analysis of the event bad. The analysis of the bad event in G2 is con-

siderably more challenging and a direct approach (as done for G3) does not work. Instead, we

take inspiration from the “deferred analysis” technique of Gennaro and Shoup [116]. Rather than

analysing the bad events in G2, we defer the analysis to G3 (for which we already have a bound).

However, it is not at all evident that in the hop G2 to G3 the probability the bad flag is set stays

the same (as was the case for the deferred analysis by Gennaro and Shoup). Indeed, it is unlikely

to be the case, however we are able to show that the difference between the two bad events from

occurring is bound by IND-PKDM-CCA advantage of an adversary A3 (as described in Fig. 3.14)
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against the DEM, so

Pr [A sets bad in G2]− Pr [A sets bad in G3] ≤ AdvIND-PKDM-CCA
DEM, A3

(λ) . (3.13)

A3 playing ExpIND-PKDM-CCA-b
DEM, A3

(λ):
pp← PGen(λ)
t← 0
sk← ()

x $←− {0, 1}λ

Hlist,Flist, FL← ∅
b′ ← ANew,H,LRb,Dec(pp)
if an ABORToccurs then

return 1
return 0

New():
t← t + 1
(pkt, skt)← KGen(pp)
Append skt to sk
return pkt

H(k):
if (k, hk) ∈ Hlist then

return hk
if (k, ∗) ∈ Flist then

ABORT
hk ← PRFx(k)
Hlist ← Hlist ∪ {(k, hk)}
return hk

LRb(ψ
H, i):

ψH → ϑ
for RO query k:

if (k, j) ∈ Flist
Incorporate kj into ϑ

else
h← PRFx(k)

(ω, k)← KEM.Encappki
()

if (k, ∗) ∈ Hlist then
ABORT

if (k, j) ∈ Flist then
call Cb ← LR(j, ϑ)

else
call j← New()
Flist ← Flist ∪ {(k, j)}
call Cb ← LR(j, ϑ)

FL← FL∪ {(j, C)}
return (ω, Cb)

Dec(ω, C, i):
if (ω, C, i) ∈ FL then

return  
k← Decapski

(ω)
if (k, j) ∈ Flist

call m← D(C, j)
else

hk ← H(k)
m← DEM.Dhk

(C)
return m

Figure 3.14: Description of reduction A3 used to prove (3.13). When A3 runs A, it needs to create an environment
ExpIND-KDM-CCA

Hyb, A . The messages m0 and m1 and also ω and k are ‘created’ just as they are in normal LRb, whereas
hk is virtually set to whatever value is used in the game A3 itself is playing by A3’s calls to New, LR and D (from
ExpIND-PKDM-CCA

DEM, A3
). The number of key pairs A3 can ask for is upper-bounded by the number of New queries A

makes. Note that A3 need not know hk for this simulation.

Similarly to the analysis of (3.11), it is necessary to translate the function ψ into a ϑ, and

align the simulated queries correctly. We set this up so that the bad event in the security games

corresponds to A3 causing an ABORT in the reduction.

1. If A3 is in game IND-PKDM-CCA-1 then, unless ABORT occurs, this is a perfect simulation

of G2 for A.
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2. If A3 is in game IND-PKDM-CCA-0 then, unless ABORT occurs, this is a perfect simulation

of G3 for A.

3. A3 will ABORT iff the event bad occurs in (either) G2 (or G3).

Consequently we have

Pr [A sets bad in G2] = Pr
[
A3 ksees ABORT in ExpIND-PKDM-CCA-1

]
Pr [A sets bad in G3] = Pr

[
A3 sees ABORT in ExpIND-PKDM-CCA-0

]
.

Since by construction (and definition) we also have

Pr
[
A3 sees ABORT in ExpIND-PKDM-CCA-b

]
= Pr

[
ExpIND-PKDM-CCA-b = 1

]
and so our claim (3.13) follows. Finally we put all of the terms together and arrive at the claimed

bound.

AdvIND-KDM-CCA[Ψ]
Hyb, A (λ) =

∣∣∣(−1)b · Pr
[
ExpIND-KDM-CCA-b

Hyb, A (λ) = 1
]∣∣∣

=
∣∣∣Pr
[
G0
A = 1

]
− Pr

[
G5
A = 1

]∣∣∣ [by (3.3),(3.4)]

=
∣∣∣Pr
[
G0
A = 1

]
− Pr

[
G1
A = 1

]
+ Pr

[
G1
A = 1

]
− Pr

[
G2
A = 1

]
+Pr

[
G2
A = 1

]
− Pr

[
G3
A = 1

]
+ Pr

[
G3
A = 1

]
− Pr

[
G4
A = 1

]
+Pr

[
G4
A = 1

]
− Pr

[
G5
A = 1

]∣∣∣
≤

∣∣∣Pr
[
G0
A = 1

]
− Pr

[
G1
A = 1

]
+ AdvPRF

F, A(λ) + Pr
[
G2
A = 1

]
−Pr

[
G3
A = 1

]
+ AdvPRF

F, A(λ) + Pr
[
G4
A = 1

]
− Pr

[
G5
A = 1

]∣∣∣ [by (3.7), (3.9)]

≤
∣∣∣Pr [A sets bad in G1]

∣∣∣+ Pr [A sets bad in G4] + [by (3.5), (3.6)]

+AdvIND-PKDM-CCA
DEM, A2

(λ) + 2 ·AdvPRF
F, A(λ) [by (3.11)]

≤
∣∣∣Pr [A sets bad in G2] + AdvPRF

F, A(λ)
∣∣∣+ Pr [A sets bad in G3] [by (3.8), (3.10)]

+AdvPRF
F, A(λ) + AdvIND-PKDM-CCA

DEM, A2
(λ) + 2 ·AdvPRF

F, A(λ)

≤ 2 · Pr [A sets bad in G3] + AdvIND-PKDM-CCA
DEM, A2

(λ)

+AdvIND-PKDM-CCA
DEM, A3

(λ) + 4 ·AdvPRF
F, A(λ) [by (3.13)]

≤ 2 ·AdvIND-PKDM-CCA
DEM, A2

(λ) + 2 ·AdvµOW-CCA
KEM, A1

(λ)

+2 · CollKEM(qLR, λ) + 4 ·AdvPRF
F, A(λ) . [by (3.12)]
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3.5.2.1 IND-KDM Security of TYPE-2 Hybrid Encryption

Recall that in TYPE-2 KEMs there is no efficient oracle that takes a protokey k and a key encap-

sulation ω and informs the querying entity whether or not ω is an encapsulation of k or not.

Theorem 3.4. Let Hyb be a hybrid PKE scheme as defined above that comprises a TYPE-2 key encapsula-

tion mechanism KEM and a data encapsulation mechanism DEM. For any adversary A that asks at most

q oracle queries (encryption queries + direct RO queries + indirect RO queries), and for all length-regular

ψ ∈ Ψ, there exists algorithms A1 and A2 such that

AdvIND-KDM-CCA[Ψ]
Hyb, A (λ) ≤ 2q ·AdvOW-CCA

KEM, A1
(λ) + 2 ·AdvIND-PKDM-CCA

DEM, A2
(λ) + 4 ·AdvPRF

F, A(λ)

Proof: The proof is identical to the proof of Theorem 3.2 up until equation (3.12), and instead we

have:

Pr[A sets bad in G3] ≤ q ·AdvOW-CCA
KEM, A1

(λ) (3.14)

In TYPE-2 KEMs an adversary playing the OW-CCA game cannot check if each query is equal

to the challenge. As a result, in the simulation of LR0 the probability that we can win the KEM

game whenA sets bad in G2 is 1
q , where q is the total number of queries thatAmakes. This factor

carries through in the term collection at the end of the proof.

3.6 Separation Results for KDM Security in the Hybrid Framework

We now detail two schemes that are secure under standard security definitions, yet are insecure

when the adversary has access to a key cycle of length 2. We recall that security against 2-cycles is

referred to as 2-circular security. We cast the two schemes, both reliant on the SXDH assumption

[19] and containing somewhat ‘artificial properties,’ in the hybrid framework. Since there is no

need to make anything other than cosmetic changes to the schemes to make them hybrid, the

security and insecurity results relating the full schemes follow from the original papers (and we

refer to the original papers for full details and proofs).

By inspection, it also easy to see that both KEMs are IND-CPA secure under the SXDH as-

sumption and that the DEMs are one-time IND-CPA secure, assuming a key derivation function

is pseudorandom. The reason the schemes nonetheless fail to fall under our framework, is that

the key derivation function is only applied to part of the key. Indeed, it is the other part of the

key (and how it is used by the DEM) that has been carefully crafted by the original authors to

ensure 2-circular insecurity. As a result, these existing counterexamples also serve as proof that
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the KEM-DEM framework per se does not provide any ‘leverage’ when it comes to increasing

resistance against key-dependent message attacks.

3.6.1 Writing Acar et al.’s es2 as a KEM and DEM

Acar et al. [6] present schemes that are IND-R-secure (indistinguishable from random)

if the SXDH problem is hard, yet not 2-circular secure (see Section 3.3.3). Let GS

be a group scheme for which SXDH is hard. The original paper shows es2 =

(es2.PGen, es2.KGen, es2.Enc, es2.Dec, es2.MsgR, es2.CtxtR), an asymmetric scheme. The paper also

presents a symmetric scheme but our focus will be on es2. The decryption keys are in the message

space.

The authors showed, in lemmas 3 and 4 of [6], that this scheme is IND-R-secure

but not 2-circular secure. We will now cast this scheme in a hybrid framework

and comment on the security properties. Fig. 3.15 details hybrid scheme Hyb1 =

(Hyb1.PGen,Hyb1.KGen,Hyb1.KEM.Encap,Hyb1.DEM.E,Hyb1.KEM.Decap,Hyb1.DEM.D) which is a

straightforward adaptation of the es2 scheme. The KEM part generates keys that are uniform over

the keyspace, however it is important to note that the keyspace of the DEM part depends on pp,

so we must allow some joint parameter generation between the KEM and the DEM. The changes

from the original scheme are only cosmetic, and as a result the security properties of the original

scheme—namely IND-R-secure yet KDM- and 2-circular-insecure—still hold.

The KEM as described in Fig. 3.15 is IND-CPA secure under the SXDH assumption: parame-

ters, public key, key encapsulation and encapsulated key form two independent DDH instances

in each of the groups, so replacing any of these (in particular the keys) with unrelated random el-

ements from the same group will go unnoticed (assuming SXDH). The DEM is deterministic, and

hence it can clearly not be multi-time secure. However, it is one-time secure: For every T1 and m2,

there is a unique Ω1 such that T1 = Ωm2
1 , indicating that m2 is information-theoretically hidden

given T1 and similarly for m1 and T2; moreover, if H is a balanced function, then m1 + H(. . . , Z1)

operates as a perfect one-time pad. Thus the DEM is perfectly one-time secure if H is a balanced

function. If H is a pseudorandom generator, security degrades to one-time IND-CPA security.

As an aside, while Acar et al. noted the scheme was insecure against 2-cycles, they did not

remark on 1-cycles. It is easy to see that security also breaks down in this case: If ψ(sk) =

ψ(x1, x2) = (x1, x2) then an adversary can disinguish the encryption of (m1, m2) = (x1, x2): T1 =

gx1u1/x2
1 and T2 = gx2u2/x1

2 so e(T1, T2) = e(g1, g2)x1u1x2u2/x1x2 = e(g1, g2)u1u2 = e(U1, U2) so the

adversary can simply check if these values coincide.
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Hyb1.PGen(λ) :

(p, G1, G2, GT, e, g1, g2)
$←− GS(λ)

pp← (p, G1, G2, GT, e, g1, g2)
return pp

Hyb1.KGen(pp) :

x1, x2
$←− Z∗p

X1 ← gx1
1 ; X2 ← gx2

2
sk← (x1, x2) ; pk← (X1, X2)
return (pk, sk)

Hyb1.KEM.Encap(pp, pk) :
(X1, X2)← pk

y1, y2, u1, u2
$←− Z∗p

Y1 ← gy1
1 ; U1 ← gu1

1 ; Z1 ← Xy1
1

Y2 ← gy2
2 ; U2 ← gu2

2 ; Z2 ← Xy2
2

Ω1 ← Xu1
1 ; Ω2 ← Xu2

2
ω ← (Y1, Y2, U1, U2)
k← (Z1, Z2, Ω1, Ω2)
return (ω, k)

Hyb1.DEM.E(pp, pk, k, (m1, m2))

(Z1, Z2, Ω1, Ω2)← k
T1 ← Ω1/m2

1 ; T2 ← Ω1/m1
2

c1 ← m1 + H(pp, 1, Z1)
c2 ← m2 + H(pp, 2, Z2)
C← (T1, T2, c1, c2)
return C

Hyb1.KEM.Decap(pp, sk, ω)

(x1, x2)← sk
(Y1, Y2, U1, U2)← ω

Z1 ← Yx1
1 ; Z2 ← Yx2

2

Ω1 ← Ux1
1 ; Ω2 ← Ux2

2

k← (Z1, Z2, Ω1, Ω2)
return k

Hyb1.DEM.D(pp, k, C)

(T1, T2, c1, c2)← C
(Z1, Z2, Ω1, Ω2)← k
m1 ← c1 −H(pp, 1, Z1)
m2 ← c2 −H(pp, 2, Z2)
return (m1, m2)

Figure 3.15: Hybrid scheme Hyb1 based on es2 of [6]. KEM is IND-CPA if DDH in G1 holds.

3.6.2 Writing Cash et al.’s ΠCPA as a KEM and DEM

The encryption scheme ΠCPA of Cash et al. [87] also uses asymmetric bilinear groups e : G1 ×

G2 → GT of prime order p, and assumes that G1 and G2 are distinct and that the DDH assumption

holds in both (i.e. the SXDH assumption). The scheme includes functions encode :M 7→ {0, 1}l(λ)

and decode : {0, 1}l(λ) 7→ M, which denote an invertible encoding scheme, where l(λ) is the

polynomial length of the encoded message. Let F : GT 7→ {0, 1}l(λ) be a pseudorandom generator.

The authors show that this scheme is IND-CPA secure, however when given a circular encryp-

tion of two keys, an adversary can distinguish another ciphertext with probability 1/2. In fact,

with probability 1/2 over the coins used in key generation, the adversary can recover both secret

keys. In the appendix of the full version of their paper, the authors give another scheme that

is IND-CPA secure without using the ‘group-switching’ technique, and experiences catastrophic

collapse (meaning key recovery) in the presence of a 2-cycle, with even higher adversarial success

probability.

Fig. 3.16 details scheme Hyb2 which is a straightforward casting of the ΠCPA scheme in the hy-

brid framework. Again, the changes from the original scheme are only cosmetic: the (in)security
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properties of the original scheme, namely IND-CPA secure yet 2-circular insecure carry over with-

out reserve. Here we consider the security of the KEM and the DEM as defined by us. The DEM

is secure for arguments similar to those used for the Acar et al. scheme: it is one-time IND-CPA

secure provided that F is a pseudorandom generator.

Hyb2.PGen(λ) :

(p, G1, G2, GT, e, g1, g2)
$←− GS(λ)

pp← (p, G1, G2, GT, e, g1, g2)
return pp

Hyb2.KGen(pp) :

x1, x2
$←− Zp

β
$←− {0, 1}

Y1 ← e(g1, g2)x1

if β = 0 then
Y2 ← gx2

1
if β = 1 then

Y2 ← gx2
2

sk← (β, x1, x2)
pk← (β, Y1, Y2)
return (pk, sk)

Hyb2.KEM.Encap(pp, pk) :
(β, Y1, Y2)← pk

r $←− Zp ; R $←− GT
c2 ← R.Yr

1 ; k1 ← R
k2 ← Yr

2
if β = 0 then

c1 ← gr
1

if β = 1 then
c1 ← gr

2
ω ← (c1, c2)
k← (k1, k2)
return (ω, k)

Hyb2.DEM.E(pp, pk, k, (m1, m2))

(β, Y1, Y2)← pk
(α, m1, m2)← M
(k1, k2)← k
I← F(k1)⊕ encode(M)
c4 ← I
if β = 0 then

c3 ← km2
2 .gm2

1
if β = 1 then

c3 ← km2
2

C← (c3, c4)
return C

Hyb2.KEM.Decap(pp, sk, ω)

(β, x1, x2)← sk
(c1, c2)← ω
if β = 0 then

R← (c2/e(c1, g2)x1)
k2 ← cx2

1
if β = 1 then

R← (c2/e(g1, c1)
x1)

k2 ← cx2
1

k1 ← R
k← (k1, k2)
return k

Hyb2.DEM.D(pp, k, C)

(c3, c4)← C
(k1, k2)← k
M′ ← F(k1)⊕ c4
M← decode(M′)
return M

Figure 3.16: Asymmetric scheme Hyb2 based on ΠCPA of Cash et al. [87]. Message space isM = {0, 1}×Zp×Zp
thus m1 and m2 must be non-zero, these values can be included in the message space by proper encoding. The
ciphertext space is Gβ+1 × GT × Gβ+1 × {0, 1}l(λ). Note that Y2 may be either in G1 or G2 depending on the
structure of the public key.

By construction, if β = 0 the KEM part takes place primarily in G1, whereas if β = 1 there

is a symmetric move to G2. Consequently, we only need to analyse the KEM security for β = 0

and the β = 1 follows by symmetry. For β = 0, we have that (g1, c1, Y2, k2) forms a DDH tuple;
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if we substitute ~Y1 = gx1
1 for Y1 and inverse R through the pairing resulting in ~R = e(R, g2) and

let c̃2 = ~R.~Y1
r

(all this only makes the adversary’s life easier) then the same holds for the tuple

(g1, ~Y1,~R, c̃2/~R). We conclude that the KEM (for β = 0) is one-way secure if the CDH assumption

holds in G1 and and IND-CPA if the DDH assumption holds (in G1).

We observe that the scheme ΠCPA is not trivially insecure under 1-cycles. In fact, if the square

decision Diffie Hellman (SDDH) [24] assumption holds in both groups the scheme seems 1-cycle

secure and we conjecture that the scheme is actually fully single-key IND-KDM[Ψ] secure in the

Generic Group Model [181] (adapted to the asymmetric pairing setting).

3.7 Conclusions

This chapter has detailed how to construct a hybrid encryption scheme that is secure in the pres-

ence of an adversary that has access to encryptions that depend on the secret key. The construc-

tion, proven in the random oracle model, demonstrates that a key encapsulation mechanism that

is µOW-CCA secure combined with a data encapsulation mechanism that is IND-CCA secure yields

an IND-KDM-CCA secure hybrid encryption scheme. Further, known separation results for circu-

lar security are extended to the hybrid framework to demonstrate that hybrid encryption does

not provide any leverage when it comes to mitigating key-dependent message attacks.

The main open problem stemming from this work regards instantiating the random oracle.

As mentioned above, Chang et al. [88] showed that the Kurosawa-Desmedt hybrid encryption

scheme is KDM secure in the standard model with respect to a very limited function class. While

this is an interesting result, this function class only appears to be useful in the anonymous cre-

dential framework (where hybrid encryption is not particularly beneficial). A generic standard

model result for achieving KDM security for hybrid encryption remains a significant challenge,

with the major sticking point being the key derivation function. An open problem is to inves-

tigate whether in general instantiating the KDF is possible using the Universal Computational

Extractor [37, 38, 36] paradigm, or if one can show this to be impossible using indistinguishabil-

ity obfuscation with results reminiscent of those of Brzuska, Farshim and Mittelbach [78, 79] and

Brzuska and Mittelbach [80, 81].
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4.1 Overview and Motivation

The work in this chapter is largely based on Encryption Schemes Secure under Related-Key and Key-

Dependent Message Attacks by Böhl, Davies and Hofheinz [68] published at PKC 2014. The full version

is available via ePrint [67].

The study of related-key attack (RKA) security attempts to model the scenario where an ad-

versary can manipulate the execution of a cryptographic protocol or primitive in such a way that

a modified key replaces the ‘honest’ key. This is at odds with the standard assumption in security

definitions that the adversary gets only black-box access to the primitive(s) in question. This is a

real-world concern: consider an adversary that can tamper with a device so that certain bits of a

secret key of a block cipher are flipped, or inject a fault into a certificate authority so that signing

is performed under a modified key [71, 57].

The design of cryptographic primitives that are robust in the presence of related-key attacks

has become a desirable security goal, with block ciphers receiving particular attention. This effort
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has been complemented by a significant effort by the theoretical research community to under-

stand the limits of the RKA framework, in terms of secure constructions and impossibility results.

The modification applied to the secret key is assumed to be provided by the adversary, and

as a result security definitions are parameterised by a set of functions that act on the keyspace.

Naturally it is desirable to achieve RKA security for particular primitives with respect to a rich

function class, however certain natural function classes yield trivial attacks. In the related litera-

ture section we detail existing results regarding the robustness of primitives such as PRFs, block

ciphers and SKE/PKE in the presence of RKAs.

A natural question arises: what is the link between related-key attack security and key-

dependent message security? Both models consider an adversary that has capabilities beyond

the scope of standard security definitions, so it is reasonable to assume that an adversary may be

able to force encryptions under related keys of messages that could depend on the keys. A joint

notion of security combining related-key and KDM attacks was given by Applebaum at TCC

2013 [15]; the work in this chapter will describe a generic framework for constructing schemes

that are secure in this joint model. Intuitively, our framework states that a symmetric encryp-

tion scheme is RKA-KDM secure if it achieves KDM security and there exists an efficient RKA

transformer that produces encryptions under related keys without knowledge of the underlying

key. To demonstrate the effectiveness of the framework, we present instantiations that meet the

requirements to yield schemes secure under a number of computational assumptions (namely

DDH, DCR, QR and LWE).

The published version [68] and early editions of the full version [67] contain a stronger claim

which turns out to be false. The stronger claim was that a symmetric encryption scheme is RKA-

KDM secure if the following simultaneously hold: standard IND-CPA security, the existence of

a transformer that produces encryptions under related keys, and the existence of a transformer

that produces key-dependent messages. A corollary of this claim was that the combination of

IND-CPA security and the KDM transformer implied KDM-CPA security, and Section 4.4.2 will

detail why this is not the case.

4.2 Related Literature

Block Cipher Cryptanalysis. Initial research efforts in related-key cryptography were geared

towards block cipher cryptanalysis; Knudsen [143] and Biham [53] independently developed

chosen-plaintext attacks against LOKI91 [77]. Related-key cryptanalysis of numerous ciphers in-

cluding Triple-DES was given by Kelsey, Schneier and Wagner [138, 139]. Iwata and Kohno [135]
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looked at two crucial components of the 3GPP security architecture [1, 2] used in mobile com-

munications: the symmetric encryption scheme f 8 (variant of OFB mode of operation) and the

message authentication code f 9 (variant of CBC-MAC) and showed how to prove both secure if

the underlying block cipher is an RKA-secure PRP (for XOR-induced related-key attacks).

A number of papers presenting related-key cryptanalysis of AES [190, 142, 121, 61, 60, 59] and

other practical block ciphers [54, 55, 56] encouraged the theoretical side of RKA security research

we refer to these works and the references therein for a more complete overview of this vast

research topic.

Theoretical Models. In 1997 Boneh et al. [71] (PKE setting) and Biham and Shamir [57] (sym-

metric encryption setting) showed how tampering could allow an adversary to mount what we

now know as related-key attacks. A more formal security treatment was provided by Bellare and

Kohno [44], who gave the first definition of related-key deriving functions and further study of

related-key-secure cryptography with a focus on block ciphers. Soon after, Lucks [158] gave a

construction that is secure when restricting the adversary to only modifying part of the key; the

construction hashes the secret key before use and then models the hash function as a random

oracle.

Gennaro et al. [115] gave a theoretical framework attempting to capture side-channel analysis,

and reached many of the same impossibility results as Bellare and Kohno1. Ishai, Prabhakaran,

Sahai and Wagner [133], building upon [134, 115], investigate so-called private circuits which are

circuits that carry out a specific functionality while protecting internal secret information even

when an adversary can invoke an unbounded number of faults. Albrecht et al. [9] gave an ide-

alised notion of computation where the key may depend on the ideal primitive itself.

RKA-Secure Primitives. In 2010 Bellare and Cash [28] gave PRPs and PRFs that are RKA se-

cure in the standard model and based on DDH and DLIN (see Section 4.3.1). Not long afterwards

Bellare, Cash and Miller [31] gave definitions of RKA security for a number of primitives (see

Sections 4.3.1 and 4.3.2) and looked at how one could give RKA-secure constructions of symmet-

ric encryption, identity-based encryption (IBE) and signatures from RKA-secure PRFs (for linear

functions since no constructions secure against richer classes were available at the time). Bellare,

Meiklejohn and Thomson [45] show how to build RKA-secure signatures from RKA-secure one-

way functions, and show that many intuitive one-way functions are already RKA secure (all in

1As pointed out by Abdalla et al. [5], Gennaro et al. [115] did not seem to be aware of the work of Bellare and
Kohno [44].
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the context of linear functions, also see Section 3.2 for details of this paper’s work on KDM-secure

storage). Instantiations of IBE and other primitives, RKA-secure for affine and polynomial func-

tions, were given by Bellare, Paterson and Thomson [47], and Wee [186] presented RKA-secure

PKE schemes (for linear functions). Abdalla, Benhamouda, Passelègue and Paterson [5] gave

RKA-secure PRFs for affine and polynomial functions (a weaker result for these function classes

was given in the concurrent work of Lewi et al. [154] based on the PRFs of Boneh et al. [73],

and Applebaum and Widder [18] gave linear PRFs for the scenario where the keyspace is bit-

strings rather than group elements). Abdalla, Benhamouda and Passelègue [4] generalised the

framework of [5] and gave PRFs that are RKA secure with respect to arbitrary permutations of

polynomials.

Other Approaches. To emphasise the diversity of the RKA literature, we remark that use of

one-time RKA-secure schemes as a building block for fuzzy extractors robust against adversarial

modification was a short-lived hot topic [104, 92, 137], and later Goldenberg and Liskov [118]

considered related-key secure PRFs and block ciphers in terms of pseudorandom bits, showing

that a 1-bit RKA-secure PRG is sufficient to build RKA-secure PRPs. Applebaum, Harnik and

Ishai [17] presented LPN and LWE-based chosen-plaintext attack-secure symmetric encryption

schemes resistant to linear RKAs, and Pietrzak [170] showed how these schemes were actually

secure against affine RKAs. Bitansky and Canetti [63] looked at point obfuscation and gave RKA-

secure constructions, Dziembowski, Pietrzak and Wichs [109] focused on an information-theoretic

approach for tamper prevention, and Goyal, O’Neill and Rao [122] gave a general primitive called

a correlated input secure hash function, which has applications beyond RKA security.

Topics Linked to RKA Security. Related-key attack security can be seen as a component in the

theoretical study of attacks on real systems, with two other main areas in this subfield being

KDM security (see Chapter 3) and leakage resilient cryptography (see [134, 161, 108, 64, 106]

and references therein). Other adversarial models include resistance against reset attacks [189]

(adversary can rewind an honest party to an earlier state), randomness-dependent messages [58,

126] and the recent work on related-randomness attacks [168, 36] (adversary can force a scheme

to reuse (functions of) past random values).

RKA-KDM Security. In work that inspired the results in this chapter, Applebaum [15] gave

the first joint notion of security for encryption that is secure against related-key attacks and key-

dependent message attacks, in the context of garbled circuits. The RKA-KDM-secure construction
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given by Applebaum uses an RKA-KDM secure symmetric encryption scheme to garble XOR

gates ‘for free’ (i.e. no explicit encryption is required). Applebaum highlighted the strength

of this joint notion by giving a scheme that is RKA secure and KDM secure, yet suffers a key-

recovery attack in the presence of an adversary with RKA-KDM query capability. Intuitively the

scheme (see [14] Section 5.3, full version of [15]) consists of a double encryption where the inner

encryption is RKA secure (for linear RKA functions) and an outer encryption that is KDM secure

(for linear KDM functions).

4.3 Existing Security Models and Formalism

We now formalise the ability of an adversary to tamper with the keys used in cryptographic sys-

tems. We refer to Φ : K → K as the set of related-key deriving (RKD) functions that the adversary

is allowed to query. Creation of primitives secure with respect to rich and meaningful function

classes has proved to be a considerable challenge for the cryptographic community, and while the

literature is now diverse it took a long time for such candidate schemes to appear.

Using the notation of [47], we write ΦC for the set of constant functions. If K is a group under

operation ∗ then Φlin is the set of linear functions on K, and if K is a ring then Φaff denotes affine

functions and Φpoly(d) denotes polynomial functions over K of degree at most d:

ΦC := {ϕC : K → K, k 7→ C : C ∈ K}

Φlin := {ϕa : K → K, k 7→ a ∗ k : a ∈ K}

Φaff := {ϕa,b : K → K, k 7→ a · k + b : a, b ∈ K}

Φpoly(d) := {ϕq : K → K, k 7→ q(k) : q ∈ Kd}.

Naturally, the class of functions that we allow the adversary access to depends on the alge-

braic structure of the keyspace: for bitstrings it makes more sense to restrict attention to linear

functions, where ∗ is XOR. A function class Φ is claw-free if for all distinct ϕ 6= ϕ′ ∈ Φ, then

ϕ(k) 6= ϕ′(k) ∀k ∈ K. Note that while constant and linear functions are inherently claw-free,

affine and polynomial functions in general are not. In the literature many authors only consider

K = {0, 1}λ for some security parameter λ, and only consider (linear) XOR-induced related-key

attacks

Φlin ⊃ Φxrka := {ϕ∆ : {0, 1}λ → {0, 1}λ, k 7→ ∆⊕ k : ∆ ∈ {0, 1}λ},

and this is a function class we will use later on. Note that in this class the adversary cannot fix
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key bits to certain values, and cannot swap the position of key bits.

4.3.1 RKA Security for PRFs and PRPs

We now detail the definition of RKA security for pseudorandom permutations given by Bellare

and Kohno [44]. This definition is given for historical context and is not used later in the chapter,

however the set up of the security model and constructions are indicative of the approach to RKA

security throughout the literature. The notation Perm(K,D) refers to the set of all block ciphers

(permutations) with domain D and keyspace K, so G
$←− Perm(K,D) means selecting a random

block cipher over D.

ExpRKA-PRP[Φ]-b
E, A (λ) :

G
$←− Perm(K,D)

k $←− K
b′ ← ALRb(λ)
return b′

LRb(ϕ, x) :
if ϕ 6∈ Φ then

return  
c1 ← Eϕ(k)(x)
c0 ← Gϕ(k)(x)
return cb

Figure 4.1: The experiment defining RKA-PRP[Φ] security for block cipher E.

Definition 4.1 (RKA-PRP[Φ] Security.). Let E : K×D → D be a family of functions where the domain

is specified by a security parameter λ, and let Φ be a set of RKD functions over the keyspace K.

Then the RKA-PRP[Φ] advantage for an adversary A against E is defined by

AdvRKA-PRP[Φ]
E, A (λ)

de f
=

∣∣∣∣ ∑
b∈{0,1}

(−1)b · Pr
[
ExpRKA-PRP[Φ]-b

E, A (λ) = 1
]∣∣∣∣

where experiment ExpRKA-PRP[Φ]-b
E, A is given in Fig. 4.1.

An analogous experiment for RKA-PRF[Φ] security can be realised by setting the outputR to

be something not necessarily equal to the input domain D, and choosing the function G from the

set of all functions from K×D → R.

As mentioned above, if the constant function ϕ(k) = C is allowed for some C known to

the adversary, then RKA security (for any indistinguishability-style notion) for any determinis-

tic primitive cannot be achieved since the adversary can make one query to the real-or-random

oracle, calculate the primitive on the input under key C and check if it matches the oracle output.

Bellare and Kohno [44] showed that Naor and Reingold’s [162] DDH-based PRF and Lewko

and Waters’ [155] DLIN-based PRF are insecure in the presence of related-key attacks. Lucks

gave RKA[Φlin]-secure PRF constructions for K = ZM (for certain composite M) where ∗ is ad-
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dition modulo M, under novel interactive assumptions. Bellare and Cash [28] gave RKA[Φlin]-

secure PRFs (for claw-free classes Φ since linear functions are inherently claw-free) and used

deterministic extractors to get RKA[Φlin]-secure PRGs with bitstring outputs, then used those as

a key-derivation function for a normal (i.e. not RKA-secure) PRP to get RKA[Φlin]-secure PRPs

(note the function class with respect to which these primitives provide security carries through

from PRF to PRG to PRP). Their main construction is secure with respect to keyspace (Z∗p)
n+1

under component-wise multiplication modulo p, with security based on the DDH assumption.

They also gave an RKA[Φlin]-secure PRF based on DLIN. The Bellare-Cash [28] framework relies

on two properties: a key-transformer which is very similar to the RKA transformer described in

Section 4.4.2, and so-called key-fingerprinting which means that the adversary’s queries are ap-

propriately separated prior to being processed by the PRF. The original framework has a bug, as

described in the most recent iteration of the full version [29], meaning that the analysis of a third

construction, an additive DDH-based RKA[Φlin]-secure PRF (with exponential security reduction)

no longer holds.

Abdalla et al. [5] give RKA[Φaff]- and RKA[Φpoly(d)]-secure PRFs, recovering the withdrawn

Bellare-Cash construction and removing the claw-free assumption for the wider classes. The con-

struction for affine RKD functions is secure under DDH, and for polynomial functions the authors

require the decisional d-Diffie-Hellman Inversion (d-DDHI) assumption that was introduced by

Goyal et al. [122].

4.3.2 RKA Security for Symmetric Encryption

We now present the definition of RKA security in the context of symmetric encryption, and again

follow the ‘real-or-random’ paradigm. The definition is parameterised by the RKD function class

Φ. An adversary has access to an encryption oracle which on input a RKD function ϕ ∈ Φ

and message m ∈ M receives either an encryption of m under the related key Eϕ(k)(m) or an

encryption under the related key of a dummy message. In the previous section we referred to the

RKA-PRP[Φ] security for PRPs, however for encryption we aid exposition by referring to RKA[Φ]

security, dropping explicit mention of the primitive in question.

For this definition and for the rest of this chapter, we will assume that the message space

M is finite and fixed a priori, reflecting the discussion in Section 3.3.1. While this restriction on

the message space is at odds with the standard assumption of much of the symmetric encryp-

tion community that messages are arbitrary-length bitstrings, the analysis later on will utilise a

number of techniques based in public key cryptography, including message spaces in algebraic
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groups. Note that the message spaceMmay depend on the public parameters pp.

ExpRKA[Φ]-b
Σ, A (λ) :

pp← Pg(λ)
k← Kg(pp)

m0
$←−M

b′ ← ALRb(pp)
return b′

LRb(ϕ, m) :
if ϕ 6∈ Φ then

return  
m1 ← m
c← Eϕ(k)(mb)
return c

Figure 4.2: The experiment defining RKA[Φ] security for symmetric encryption.

Definition 4.2 (RKA[Φ] Security.). Let Σ = (Pg,Kg,E,D) be a symmetric encryption scheme with

message spaceM. Adversary A can make encryption queries by submitting (ϕ ∈ Φ, m ∈ M) and the

responses it receives are detailed by the LRb oracle in Fig. 4.2.

Then the RKA[Φ] advantage for an adversary A against Σ is defined by

AdvRKA[Φ]
Σ, A (λ)

de f
=

∣∣∣∣ ∑
b∈{0,1}

(−1)b · Pr
[
ExpRKA[Φ]-b

Σ, A (λ) = 1
]∣∣∣∣

where experiment ExpRKA[Φ]-b
Σ, A is given in Fig. 4.2.

As mentioned earlier, Bellare, Cash and Miller’s [31] transform turned a RKA[Φlin]-secure PRF

(e.g. from Bellare and Cash [28]) into a (CPA) RKA[Φlin]-secure symmetric encryption scheme.

Goyal, O’Neill and Rao [122] gave a (CPA) RKA[Φpoly(d)]-secure symmetric encryption scheme,

and the work of Bellare et al. [47] gives RKA[Φpoly(d)]-secure IBE, signature, symmetric encryption

and public key encryption schemes.

4.4 RKA-KDM Security

As noted earlier, the concept of a joint notion of security for related-key attacks and key-

dependent message attacks was first considered by Applebaum [15] (he denoted it RK-KDM

security). Applebaum made the assumption that messages were arbitrary-length bitstrings, and

that messages of equal length are encrypted to ciphertexts of equal length. We now present a

variant of Applebaum’s definition, where the dummy message m0 is chosen randomly from mes-

sage spaceM at the start of the security experiment rather than being set to 0|m1| (i.e. the length

of the ‘real’ message), since we no longer restrictM to be only bitstrings. For the scenario where

bitstrings are of fixed length, these definitions are equivalent.
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4.4.1 Security Definition

The definition we will use for RKA-KDM security is the single-key, multi-query scenario. While

definitions for KDM security of public key encryption are normally multi-key (to include key

cycles in the admissable class of KDM functions), in the symmetric setting the literature is di-

vided on this choice. While Black et al. [65] regarded a vector of symmetric keys (see Def. 3.1),

Halevi and Krawczyk [125] gave a single-key definition. Applebaum’s [15] RK-KDM definition is

also in the single-key, multi-query scenario. For the purposes of simplicity this chapter will deal

with the single-key setting and leave the multi-key scenario as an open problem: a definition is

straightforward however secure constructions pose a considerable challenge.

The adversary has access to what we refer to as an RKA-KDM oracle: the adversary sends

a related-key deriving function ϕ ∈ Φ and a key-dependent message function ψ ∈ Ψ, and will

receive an encryption under related key ϕ(k) of either key-dependent message ψ(k) or a random

element of the message space. The concern regarding length-regularity of KDM functions (see

Section 3.3) is dealt with by the previously mentioned restriction of an a priori fixed (and finite)

message space.

Definition 4.3 (RKA-KDM[Φ, Ψ] Security.). Let Σ = (Pg,Kg,E,D) be a symmetric encryption scheme.

AdversaryA can make encryption queries by submitting (ϕ ∈ Φ, ψ ∈ Ψ) and the responses it receives are

detailed by the LRb oracle in Fig. 4.3.

Then the RKA-KDM[Φ, Ψ] advantage for an adversary A against Σ is defined by

AdvRKA-KDM[Φ,Ψ]
Σ, A (λ)

de f
=

∣∣∣∣ ∑
b∈{0,1}

(−1)b · Pr
[
ExpRKA-KDM[Φ,Ψ]-b

Σ, A (λ) = 1
]∣∣∣∣

where experiment ExpRKA-KDM[Φ,Ψ]-b
Σ, A is given in Fig. 4.3.

ExpRKA-KDM[Φ,Ψ]-b
Σ, A (λ) :

pp← Pg(λ)
k← Kg(pp)

m0
$←−M

b′ ← ALRb(pp)
return b′

LRb(ϕ, ψ) :
if ϕ 6∈ Φ or ψ 6∈ Ψ then

return  
m1 ← ψ(k)
c← Eϕ(k)(mb)
return c

Figure 4.3: The experiment defining RKA-KDM[Φ, Ψ] security for symmetric encryption.

If the above definition considers only constant functions as the class of KDM functions Ψ then

we get the well-established definition of RKA security (Def. 4.2), and restricting the RKA function

class Φ to the identity function yields standard KDM security. If we apply both restrictions at once
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we get real-or-random IND-CPA security. In fact we need to ensure that the constant functions in

Ψ span the entire message space, i.e. ψm = m ∈ Ψ for all m ∈ M.

Applebaum [15] gives a construction that is ‘LIN RK-KDM’ secure forM = {0, 1}∗ and K =

{0, 1}λ, meaning for

Φxrka := {ϕ∆ : K → K, k 7→ ∆⊕ k : ∆ ∈ K}

Ψlin := {ψm,b : K →M, k 7→ m⊕ (b · k) : m ∈ M, b ∈ {0, 1}}

with a note to say that if m is longer than the length of the key then b · k is padded with zeros,

and if it is shorter then m is padded.

4.4.2 A Generic Construction

In Thm. 4.1 we will prove that an SKE scheme Σ is RKA-KDM[Φ, Ψ] secure if the following two

conditions are simultaneously met:

• Σ is IND-KDM-CPA secure,

• there is what we call an RKA[Φ] transformer2 (defined below in Def. 4.4) for Σ that, when

given Ek(m) and RKA function ϕ ∈ Φ as input, returns a value that is indistinguishable

from Eϕ(k)(m) without knowledge of the encryption key k.

This means that the RKA transformer operates without the encryption key k, and that in-

distinguishability should hold even for an adversary that is given k. An adversary playing the

RKA[Φ] transformer game is given the encryption key and is asked to distinguish the output of

the transformer from a genuine encryption performed under a related key.

These security definitions for the RKA transformer represents a known-key attack since the

adversary attempting to distinguish the output in each side of the security game is given the

encryption key k. There are two alternate notions that we will not elaborate on: a chosen-key attack

where the adversary selects the encryption key and an unknown-key attack where the adversary is

not given the key.

Informally, we say that the function FRKA[Φ](ϕ, ·) is an RKA[Φ] transformer for Σ iff an ad-

versary A cannot distinguish the output of this function from the output of Eϕ(k)(·). Note that a

2While the term transformer in this description and forthcoming definitions is somewhat imprecise, the terms sim-
ulator, oracle and machine are even less desirable. The construct acts like a simulator in the sense that it simulates
related-key outputs without the secret key, however using the term simulator and giving proofs that involve reduc-
tions that simulate an adversarial environment yields some very confusing passages. The work upon which this
chapter is based [68, 67] uses the term oracle.
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valid RKA[Φ] transformer does not take k as input, it takes ϕ and Ek(m) as input and its output

is indistinguishable from Eϕ(k)(m).

Definition 4.4 (RKA[Φ] transformer). Let Σ = (Pg,Kg,E,D) be a secret key encryption scheme. Then

the RKA-transformer[Φ] advantage for an adversary A against FRKA[Φ] and Σ is defined by

AdvRKA-transformer[Φ]
Σ, FRKA[Φ], A (λ)

de f
=

∣∣∣∣ ∑
b∈{0,1}

(−1)b · Pr
[
ExpRKA-transformer[Φ]-b

Σ, FRKA[Φ], A (λ) = 1
]∣∣∣∣

where experiment ExpRKA-transformer[Φ]-b
Σ, FRKA[Φ], A is given in Fig. 4.4.

ExpRKA-transformer[Φ]-b
Σ, FRKA[Φ], A (λ) :

pp← Pg(λ)
k← Kg(pp)
b′ ← ALRb(pp, k)
return b′

LRb(ϕ, m) :
if ϕ 6∈ Φ then

return  
c̃← Ek(m)
c1 ← FRKA[Φ]

(
ϕ, c̃
)

c0 ← Eϕ(k)(m)
return cb

Figure 4.4: The experiment defining what it means for FRKA[Φ] to be an RKA-transformer[Φ] for symmetric en-
cryption scheme Σ and RKD function class Φ.

We now state the main theorem of this chapter. The IND-KDM-CPA security experiment we

use here is the ‘alternate’ notion described in Section 3.3.1 for fixed message spaces.

Theorem 4.1. Let Σ be an SKE scheme and let FRKA[Φ] be an RKA[Φ] transformer for Σ. Then the

advantage of an adversary A against RKA-KDM[Φ, Ψ] security of Σ is

AdvRKA-KDM[Φ,Ψ]
Σ, A (λ) ≤ 2 ·AdvRKA-transformer[Φ]

Σ, FRKA[Φ], A1
(λ) + AdvIND-KDM-CPA[Ψ]

Σ, A2
(λ).

where A1 and A2 have resources comparable to A, and functions in Φ and Ψ are efficiently computable.

Proof: The proof of this theorem is by a sequence of games, which are detailed in Fig. 4.5.

G0 : In G0 the adversaryA plays against ExpRKA-KDM[Φ,Ψ]-1
Σ, A , the ‘real’ side of the RKA-KDM

security experiment. Consequently

Pr
[
G0
A = 1

]
= Pr

[
ExpRKA-KDM[Φ,Ψ]-1

Σ, A (λ) = 1
]

. (4.1)

G1 : In G1, instead of computing Eϕ(k)(ψ(k)) the experiment (recall that the experiment gen-

erates k) computes cKDM ← Ek(ψ(k)) and outputs FRKA[Φ](ϕ, cKDM) to the adversary. This game

is indistinguishable from G0 due to the indistinguishability of FRKA[Φ] (see Definition 4.4). More
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ExpRKA-KDM[Φ,Ψ]-b
Σ, A (λ) :

pp← Pg(λ)
k← Kg(pp)

m0
$←−M

b′ ← ALRb(pp)
return b′

LRb(ϕ, ψ) :
if ϕ 6∈ Φ or ψ 6∈ Ψ then

return  
m1 ← ψ(k)
c← Eϕ(k)(mb)

return c

G0 :
m1 ← ψ(k)
c← Eϕ(k)(m1)

G1 :
cKDM ← Ek(ψ(k))
c← FRKA[Φ](ϕ, cKDM)

G2 :
cKDM ← Ek(m0)
c← FRKA[Φ](ϕ, cKDM)

G3 :
c← Eϕ(k)(m0)

Figure 4.5: The security games used in the proof of Thm. 4.1. The code for each game Gi is the RKA-KDM security
experiment above with the boxed code replaced by the appropriate game code.

formally, there exists an adversary A1, detailed in Fig. 4.6 such that

∣∣∣Pr
[
G0
A = 1

]
− Pr

[
G1
A = 1

]∣∣∣ ≤ AdvRKA-transformer[Φ]
Σ, FRKA[Φ], A1

(λ). (4.2)

A1 playing ExpRKA-transformer[Φ]-b
Σ, FRKA[Φ], A1

(λ):
receive (pp, k)
b′ ← ALRb(pp)
return b′

LRb(ϕ, ψ) :
m← ψ(k)
call cb ← LRb(ϕ, m)
return cb

Figure 4.6: Description of reduction A1 used to prove Eqn. 4.2. A1 runs A and needs to create an environment
ExpRKA-KDM[Φ,Ψ]-b

Σ, A that mimics the hop between G0 and G1. Note that for this reduction to be efficient, we need to
insist that computing ψ(·) is also efficient.

G2 : For G2, instead of computing Ek(ψ(k)), the experiment computes Ek(m0). This is the

IND-KDM-CPA hop (single-key version of Def. 3.1 in Section 3.3.1), and the reduction A2 to the

IND-KDM-CPA game is detailed in Fig. 4.7.

∣∣∣Pr
[
G1
A = 1

]
− Pr

[
G2
A = 1

]∣∣∣ ≤ AdvIND-KDM-CPA[Ψ]
Σ, A2

(λ). (4.3)

G3 : In G3 the experiment computes Eϕ(k)(m0), which is indistinguishable from G2 due to the

indistinguishability of FRKA[Φ]. The reduction works in a very similar manner to that of Fig. 4.6,
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A2 playing ExpIND-KDM-CPA-b
Σ, A2

(λ):
receive pp
b′ ← ALRb(pp)
return b′

LRb(ϕ, ψ) :
call cKDM ← LRb(ψ)
cb ← FRKA[Φ]

(
ϕ, cKDM)

return cb

Figure 4.7: Description of reduction A2 used to prove Eqn. 4.3. A2 runs A and needs to create an environment
ExpRKA-KDM[Φ,Ψ]-b

Σ, A that mimics the hop between G1 and G2.

so we also name this reduction A1 and detail it in Fig. 4.8. Consequently,

∣∣∣Pr
[
G2
A = 1

]
− Pr

[
G3
A = 1

]∣∣∣ ≤ AdvRKA-transformer[Φ]
Σ, FRKA[Φ], A1

(λ). (4.4)

A1 playing ExpRKA-transformer[Φ]-b
Σ, FRKA[Φ], A1

(λ):
receive (pp, k)

m0
$←−M

b′ ← ALRb(pp)
return b′

LRb(ϕ, ψ) :
m← m0
call cb ← LRb(ϕ, m)
return cb

Figure 4.8: Description of reduction A1 used to prove Eqn. 4.4. A1 runs A and needs to create an environment
ExpRKA-KDM[Φ,Ψ]-b

Σ, A that mimics the hop between G2 and G3. Again, for this reduction to be efficient we need to
insist that computing ψ(·) is also efficient.

We now note that G3 represents ExpRKA-KDM[Φ,Ψ]-0
Σ, A , the ‘fake’ side of the RKA-KDM security

experiment, i.e.

Pr
[
G3
A = 1

]
= Pr

[
ExpRKA-KDM[Φ,Ψ]-0

Σ, A (λ) = 1
]

. (4.5)

4.4.3 A Retraction

The original paper [68] made a stronger claim than the one given in Theorem 4.1, and the claim

was that the existence of a so-called KDM transformer and standard IND-CPA security, in addition

to the existence of the RKA transformer, yields RKA-KDM security. The definition of a KDM

transformer is given below.

Definition 4.5 (KDM[Ψ] transformer). Let Σ = (Pg,Kg,E,D) be a secret key encryption scheme. Then

the KDM-transformer[Ψ] advantage for an adversary A against FKDM[Ψ] and Σ is defined by

AdvKDM-transformer[Ψ]
Σ, FKDM[Ψ], A (λ)

de f
=

∣∣∣∣ ∑
b∈{0,1}

(−1)b · Pr
[
ExpKDM-transformer[Ψ]-b

Σ, FKDM[Ψ], A (λ) = 1
]∣∣∣∣

where experiment ExpKDM-transformer[Ψ]-b
Σ, FKDM[Ψ], A is given in Fig. 4.9.
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ExpKDM-transformer[Ψ]-b
Σ, FKDM[Ψ], A (λ) :

pp← Pg(λ)
k← Kg(pp)
b′ ← ALRb(pp, k)
return b′

LRb(ψ) :
if ψ 6∈ Ψ then

return  
c̃← Ek(ψ(0))
c1 ← FKDM[Ψ]

(
ψ, c̃
)

c0 ← Ek(ψ(k))
return cb

Figure 4.9: The experiment defining what it means for FKDM[Ψ] to be a KDM[Ψ] transformer for symmetric encryp-
tion scheme Σ and KDM function class Ψ.

Note that a valid KDM[Ψ] transformer does not take k as input, it takes ψ and Ek(ψ(0)) as

input and its output is indistinguishable from Ek(ψ(k)). Also note that for constant functions

ψ ∈ Ψ a sufficient behaviour of FKDM[Ψ] is to output the ciphertext it received without changes.

All KDM[Ψ] transformers presented henceforth implicitly adopt this behaviour.

The theorem given in the published version, presented here in the concrete security frame-

work, is as follows:

Theorem 4.2 (Retracted). Let Σ be an SKE scheme that is IND-CPA secure, FRKA[Φ] be an RKA[Φ]

transformer for Σ and FKDM[Ψ] be a KDM[Ψ] transformer for Σ. Then the advantage of an adversary A

against RKA-KDM[Φ, Ψ] security of Σ is

AdvRKA-KDM[Φ,Ψ]
Σ, A (λ) ≤ 2 ·AdvRKA-transformer[Φ]

Σ, FRKA[Φ], A1
(λ) + 2 ·AdvKDM-transformer[Ψ]

Σ, FKDM[Ψ], A2
(λ)

+ AdvIND-CPA
Σ, A3

(λ).

whereA1,A2 andA3 have resources comparable toA, and functions in Φ and Ψ are efficiently computable.

Initially the problem appeared to be simply with the proof method, however this is not the

case: the statement does not hold and this is demonstrated by the following counter-example.

Consider Φ := {ϕid : K → K, k 7→ k} and Ψ := {ψid : K → M, k 7→ k} ∪ {ψC : K →

M, k 7→ C, C ∈ M}. Let Σ = (Pg,Kg,E,D) be some IND-CPA secure encryption scheme where

all ciphertexts are of equal length. Define E′ as

E′k(m) =


Ek(m)||0 if m 6= k,

Ek(0)||1 of m = k.

Decryption D′ is still possible (if ciphertext ends in 0, ignore final bit and apply D, otherwise

output k), and Σ′ = (Pg,Kg,E′,D′) is IND-CPA secure. Since the RKA function class Φ is just

the identity function, a valid RKA transformer simply outputs whatever it is given as input. A

valid KDM transformer takes as input ψ and a valid encryption of ψ(0). For the identity function
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ψ(k) = k this input is E′k(0) = Ek(0)||0 so the transformer just flips the last bit to 1. If ψ is a

constant function ψ(k) = C, then this value is E′k(C) = Ek(C)||0, and the transformer simply

outputs this value. Scheme Σ′ is not RKA-KDM secure: an adversary A sends (ϕ, ψ) = (ϕid, ψid)

to the LR oracle and receives E′ϕ(k)(ψ(k)) = E′k(k) = Ek(0)||1 if b = 1 or E′ϕ(k)(m0) = E′k(m0) =

Ek(m0)||0 so can use the final bit to distinguish with just one query.

To pinpoint the problem, if we restrict the RKD function class to identity functions in Thm. 4.2

we get the following corollary:

Corollary 4.3 (Retracted). Let Σ be an SKE scheme that is IND-CPA secure and FKDM[Ψ] be a valid

KDM[Ψ] transformer for Σ. Then Σ is IND-KDM-CPA secure.

AdvIND-KDM-CPA[Ψ]
Σ, A ≤ 2 ·AdvKDM-transformer[Ψ]

Σ, FKDM[Ψ], A1
(λ) + AdvIND-CPA

Σ, A2
(λ).

Proof: The attempted proof of this corollary is by a sequence of games, which are detailed in

Fig. 4.10. The proof breaks down in the hop between G2 and G3.

ExpIND-KDM-CPA[Ψ]-b
Σ, A (λ) :

pp← Pg(λ)
k← Kg(pp)

m0
$←−M

b′ ← ALRb(pp)
return b′

LRb(ψ) :
if ψ 6∈ Ψ then

return  
m1 ← ψ(k)
c← Ek(mb)
return c

G0 :
m1 ← ψ(k)
c← Ek(m1)

G1 :
c̃← Ek(ψ(0))
c← FKDM[Ψ](ψ, c̃)

G2 :
c̃← Ek(m0)
c← FKDM[Ψ](ψ, c̃)

G3 :
c← Ek(m0)

Figure 4.10: The security games used in the attempted proof of Corollary 4.3. The code for each game Gi is the
IND-KDM-CPA security experiment above with the boxed code replaced by the appropriate game code.

G0 : In G0 the adversaryA plays against ExpIND-KDM-CPA[Ψ]-1
Σ, A , the ‘real’ side of the

IND-KDM-CPA security experiment. Consequently

Pr
[
G0
A = 1

]
= Pr

[
ExpIND-KDM-CPA[Ψ]-b

Σ, A (λ) = 1
]

. (4.6)

G1 : For G1, instead of computing Ek(ψ(k)), the experiment computes c̃← Ek(ψ(0)) and sets
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c← FKDM[Ψ](ψ, c̃). Thus there is an adversary A1 described in Fig. 4.11 such that

∣∣∣Pr
[
G0
A = 1

]
− Pr

[
G1
A = 1

]∣∣∣ ≤ AdvKDM-transformer[Ψ]
Σ, FKDM[Ψ], A1

(λ). (4.7)

A1 playing ExpKDM-transformer[Ψ]-b
Σ, FKDM[Ψ], A1

(λ):
receive (pp, k)
b′ ← ALRb(pp)
return b′

LRb(ψ) :
call cb ← LRb(ψ)
return cb

Figure 4.11: Description of reduction A1 used to prove Eqn. 4.7. A1 runs A and needs to create an environment
ExpIND-KDM-CPA[Ψ]

Σ, A that mimics the hop between G0 and G1. Note that the reduction A1 does not need the key k,
meaning that an unknown-key variant of the KDM-transformer experiment suffices.

G2 : In G2 we replace c̃ ← Ek(ψ(0)) by c̃ ← Ek(m0). This is the IND-CPA hop. To see this,

note that an adversary distinguishing between this game and the previous game is trying to dis-

tinguish between the encryption of a constant value (picked by the adversary) and the encryption

of a random element ofM. This is the ‘real-or-random’ flavour of the IND-CPA game presented

in Def. 2.1 of Section 2.2.1. As a result, there exists an adversary A2 described in Fig. 4.12 such

that ∣∣∣Pr
[
G1
A = 1

]
− Pr

[
G2
A = 1

]∣∣∣ ≤ AdvIND-CPA
Σ, A2

(λ). (4.8)

A2 playing ExpIND-CPA-b
Σ, A2

(λ):
receive pp
b′ ← ALRb(pp)
return b′

LRb(ψ) :
m← ψ(0)
call c̃← LRb(m)
cb ← FKDM[Ψ](ψ, c̃)
return cb

Figure 4.12: Description of reduction A2 used to prove Eqn. 4.8. A2 runs A and needs to create an environment
ExpRKA-KDM[Φ,Ψ]-b

Σ, A that mimics the hop between G1 and G2.

G3 : In G3 the value FKDM[Ψ](ψ,Ek(m0)) is replaced by Ek(m0). This is the phase where the proof

breaks down. A sends ψ to its LR oracle and expects either FKDM[Ψ](ψ,Ek(m0)) or Ek(m0). If A1 sends

m0 to its own LR oracle it will receive either FKDM[Ψ](m0,Ek(m0)) or Ek(m0). The reduction A1 is

detailed in Fig. 4.13 which attempts in vain to show

∣∣∣Pr
[
G2
A = 1

]
− Pr

[
G3
A = 1

]∣∣∣ ≤ AdvKDM-transformer[Ψ]
Σ, FKDM[Ψ], A1

(λ). (4.9)
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A1 playing ExpKDM-transformer[Ψ]-b
Σ, FKDM[Ψ], A1

(λ):
receive (pp, k)

m0
$←−M

b′ ← ALRb(pp)
return b′

LRb(ψ) :
call cb ← LRb(m0)
return cb

Figure 4.13: Description of reduction A1 used in attempted proof of Eqn. 4.9. A1 runs A and needs to create an
environment ExpRKA-KDM[Φ,Ψ]-b

Σ, A that mimics the hop between G3 and G4.

Now note that G3 represents ExpIND-KDM-CPA[Ψ]-0
Σ, A , the ‘fake’ side of the IND-KDM-CPA security

experiment, i.e.

Pr
[
G3
A = 1

]
= Pr

[
ExpIND-KDM-CPA[Ψ]-0

Σ, A (λ) = 1
]

. (4.10)

While this flaw removes some of the novelty of the result, the constructions detailed later in

this chapter are largely unaffected.

4.4.4 Instantiations

We now detail specific instantiations of RKA-KDM-secure encryption schemes. The general ap-

proach is to start with a KDM-secure PKE scheme, adapt to the symmetric setting (to yield a clean

and rich RKA function class), extract a suitable key-homomorphic property that allows function-

ality of the RKA transformer, then prove IND-KDM-CPA security of the adapted scheme. Our

main contribution in all of these instantiations is the addition (or realisation) of RKA security.

The adaptations generally involve modifying the randomness used in encryption to allow con-

struction of a suitable RKA transformer, meaning that the IND-KDM-CPA proofs require either a

reduction to the original scheme or in the case of our Malkin et al. construction, a reduction to the

interactive vector games used in their proofs.

Scheme Assm. M K RKA[Φ] KDM[Ψ] C

BHHO [72] DDH {0, 1}t {0, 1}µ k⊕ ∆ Affine∗ Gt(µ+1)

BG [74] QR {0, 1}t {0, 1}µ k⊕ ∆ Affine∗ Z
t(µ+1)
N

MTY [159] DCR ZN ZN/4 k + ∆† Affine‡ (Z∗N2)
2

ACPS [16] LWE Zp {0, 1}µ k⊕ ∆ ki ⊕ b Z
µ
q ×Zq

∗ m = A · k⊕ b where A is a binary t× µ matrix where each row has one 1 and (µ− 1) zeros, and b is a bit-vector,
and the key is regarded as a bit-vector.

† mod ϕE(N)/4
‡ m = a · k + b mod N where a, b ∈ ZN.

Figure 4.14: Table detailing RKA-KDM-secure instantiations. Here Assm. indicates the assumption used to prove
IND-KDM-CPA security.

79



4.4 RKA-KDM Security

Figure 4.14 describes our instantiations and their relevant properties. Note that for BHHO,

BG and ACPS we have K = {0, 1}µ so our (linear) related-key function class is Φxrka.

In addition to these schemes, in Section 4.4.4.3 we use the approach of Bellare et al. [39] to

show that any scheme that has projection-KDM security (meaning KDM functions where each

output bit depends on just one key bit) and a suitable RKA transformer achieves RKA-(bounded-

)KDM security. By bounded-KDM security we mean functions that can be represented by circuits

of some fixed size. This approach uses the amplification technique of Applebaum [13].

Throughout this section we will regard security parameter λ as the value traditionally seen as

the security ‘goal’ for the encryption scheme. This means that if we want 128-bit security then we

set our other parameters such as prime sizes and group orders in such a way that λ = 128.

4.4.4.1 Boneh et al. [72]

As discussed in Section 3.4, the PKE scheme of Boneh et al. [72] was the first provably KDM-

secure construction under a standard assumption, namely DDH. We will employ a symmetric-

key scheme that is inspired by the ‘basic’ version of their public key scheme. The class of RKA

functions Φ that we obtain allows for XOR operations on the key while the class of KDM functions

Ψ allows the adversary to specify an index i and a bit b and receive an encryption of (ki ⊕ b).

There is a mapping from this class to the Boneh et al. scheme’s class which is affine functions

on the secret key. We construct an RKA[Φ] transformer for the scheme, and the IND-KDM-CPA

security is based on the DDH assumption.

Recall that Boneh et al.’s (public key) scheme, which we call ΠBHHO, has a secret key

(gk1 , . . . , gkµ) that is a bitstring encoded as a vector of group elements and a public key consisting

of generators g1, . . . , gµ along with h← (gk1
1 . . . gkµ

µ )−1 and uses just one random element r $←− Zp

in encryption to give ciphertexts of the form (gr
1, . . . , gr

µ, m ·hr). Our scheme makes the generators

g1, . . . , gµ part of the public parameters , and regards the secret key simply as a bitstring (this will

assist construction of our RKA transformer). Our scheme uses µ random elements in Zp for each

encryption, which means we need to replace hr as used in ΠBHHO by the value g0 ← ∏i∈[µ](g
ri
i )
−ki

to allow the decryption algorithm to ‘cancel out’ these exponents. Our plaintext messages are ‘in

the exponent’ so we use a message space of bitstrings rather than group elements, meaning our

final ciphertext component is g0 · gm rather than hr ·m. For the sake of readability we initially

introduce the scheme Σ′BHHO with message space {0, 1}. Canonical concatenation, described at

the end of this section, will yield the scheme ΣBHHO with message space {0, 1}t for some t ∈ Z.

Let G be a group of prime order p and let g be a generator of G. Our scheme Σ′BHHO for
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m ∈ {0, 1} and ciphertext space Gµ+1 is defined in Fig. 4.15, where µ = d3 log2 pe. Since the

scheme is discrete-log based, attacks run in approximately
√

p so for 128-bit security we need

µ ≈ 768.

Σ′BHHO.Pg(λ) :

g1, . . . , gµ
$←− G \ {1}

pp← (G, p, g, g1, . . . , gµ)
return pp

Σ′BHHO.Kg(pp) :

k $←− {0, 1}µ

return k

Σ′BHHO.E(m, k) :

r1, . . . , rµ
$←− Zp

g0 ← ∏i∈[µ](g
ri
i )
−ki

c← (gr1
1 , . . . , grµ

µ , gm · g0)
return c

Σ′BHHO.D(c, k) :
(x1, . . . , xµ, y)← c
m̃← y ·∏i∈[µ] xki

i
if m̃ = 1 then

return 0
if m̃ = g then

return 1
else

return ⊥

Figure 4.15: Symmetric encryption scheme Σ′BHHO forM = {0, 1}.

The RKA[Φ] transformer. The class of RKA functions that we will consider is

Φ := {ϕ∆ : {0, 1}µ → {0, 1}µ, k 7→ k⊕ ∆ : ∆ ∈ {0, 1}µ}.

An RKA[Φ] transformer FRKA[Φ] for Σ′BHHO works as follows: Given a ciphertext c =

(x1, . . . , xµ, y) and a function ϕ∆ it outputs

c′ := (x′1, . . . , x′µ, y′) := (x(−1)∆1

1 , . . . , x(−1)∆µ

µ , y · ∏
i∈[µ]

x∆i
i )

We assume that ciphertext c is honestly generated—this is a requirement of the indistinguisha-

bility experiment for FRKA[Φ]. Then we have y = gm ·∏i∈[µ] x−ki
i . We observe

y′ = gm · ∏
i∈[µ]

x−ki
i · ∏

i∈[µ]
x∆i

i = gm · ∏
i∈[µ]

x′i
(−1)∆i (−ki+∆i) (∗)

= gm · ∏
i∈[µ]

x′i
−(ki⊕∆i)

and (∗) holds since

(−1)∆i(−ki + ∆i) =


−ki if ∆i = 0

−(1− ki) if ∆i = 1

 = −(ki ⊕ ∆i)
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Therefore c′ decrypts to m under key k⊕ ∆, as required.

Lemma 4.4. FRKA[Φ] is an RKA[Φ] transformer in the sense of Def. 4.4.

Proof: The distributions ofFRKA[Φ](ϕ∆,Ek(m)) and Ek⊕∆(m) are perfectly indistinguishable, even

for someone knowing k and ∆: The x′i occur as if r′i = (−1)∆i ri was used as randomness for the

ith component (which yields the same distribution) and we have y′ = gm ·∏i∈[µ](x′i)
−(ki⊕∆i).

KDM security of Σ′BHHO. Our starting point was PKE scheme ΠBHHO that is

IND-KDM-CPA[ΨPKE] secure for affine ΨPKE, so the challenge here is to show that our modified

scheme Σ′BHHO retains security against an adversary with access to key-dependent messages of a

different form. Intuitively, we first use the hardness of DDH over G to collapse the randomness

used by the encryption oracle to one random exponent per ciphertext, so instead of r1, . . . , rµ all

generators are taken to the same random exponent r. This modified scheme resembles the ‘basic’

version of [72] with a smaller message space, and we then reduce security to the IND-KDM-CPA

security of Boneh et al.’s scheme. A major challenge is that the function classes are different, so

we require a mapping such that our reduction can convert queries ψ ∈ ΨPKE in its own PKE

game into ψ′ ∈ Ψ′SKE. The KDM function class we consider for Σ′BHHO is

Ψ′SKE := {ψi,b′ : {0, 1}µ → {0, 1}, k 7→ ki ⊕ b′ : i ∈ [µ], b′ ∈ {0, 1}}

meaning that the adversary can select one key bit at index i ∈ [µ] and a bit b′ that will be XORed

with ki.

The KDM function class used by Boneh et al., detailed here for single-key(pair) ΠBHHO, acts

from the encoded secret key sk = (gk1 , . . . , gkµ) ∈ Gµ to the message space G

ΨPKE := {ψu,v : Gµ → G, sk 7→ 〈u; sk〉 · v : u ∈ Z
µ
p, v ∈ G}

representing an ‘in-the-exponent’ inner product4 of u and secret key sk, multiplied by a group

element v. Note that in the multi-keypair version of ΠBHHO the vector u is allowed to act on a

vector of secret keys, which yields circular security.

To avoid notational issues we specify that the adversary’s KDM queries, which consist of an

index and a bit, will be referred to as ψi,b′ for this proof, and the bit that specifies whether the

adversary is interacting with the challenger’s real or random world will be denoted b.

4Meaning that 〈(a,−b, 0); (gk1 , gk2 , gk3 )〉 = gak1 · g−bk2 · g0k3 = gak1−bk2 where a, b ∈ Zp and g0 = 1G is the neutral
element of G.
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Lemma 4.5. The SKE scheme Σ′BHHO is IND-KDM-CPA[Ψ′SKE] secure for Ψ′SKE defined above if DDH

is hard over the underlying group G. More formally the advantage of an adversary A against the

IND-KDM-CPA security of Σ′BHHO is

AdvIND-KDM-CPA[SKE,Ψ′SKE]

Σ′BHHO, A (λ) ≤ (µ− 1) ·AdvDDH
G, A1

(λ) + AdvIND-KDM-CPA[PKE,ΨPKE]
ΠBHHO, A2

(λ) (4.11)

where A1 and A2 have similar resources to A, and A2 is playing against the PKE version of the

IND-KDM-CPA game.

Proof: We prove the lemma with the following sequence of games. To aid readability we

break from the strategy deployed in many parts of this thesis and define the base game to be

ExpIND-KDM-CPA[SKE,Ψ′SKE]-b
Σ′BHHO, A , meaning the challenge bit is selected at random by the challenger at

the start of the experiment.

G0 : In G0, adversary A plays ExpIND-KDM-CPA[SKE,Ψ′SKE]-b
Σ′BHHO, A , the symmetric key version of the

IND-KDM-CPA experiment.

G1 to Gµ−1: Games G1 to Gµ−1 form a hybrid argument to collapse the randomness used by

the encryption oracle. In hybrid i (i ∈ [µ − 1]) we pick the same randomness for the first i + 1

components of the ciphertext. This means that the format of a ciphertext output by the encryption

oracle in game i is

gr
1, . . . , gr

i+1, gri+2
i+2 , . . . , grµ

µ , gm ·
(

∏
i∈[i+1]

g−rki
i

) ∏
i∈[µ]\[i+1]

g−riki
i


If b = 1 then we are in the ‘real’ side of the KDM experiment so m = ki ⊕ b, and if b = 0 we are

in the ‘random’ side and m $←− {0, 1}.

Analysis. Each hop is indistinguishable due to the hardness of DDH over G (see Section 2.6.1.2).

The reduction for a hop from Gi−1 to Gi (for i ∈ [µ − 1]) is described in Fig. 4.16 and we insist

the challenge bit in the DDH game that A1 is playing is the same as the challenge bit in the

IND-KDM-CPA game that A is playing:

∣∣∣Pr
[
Gi−1

A = 1
]
− Pr

[
Gi
A = 1

]∣∣∣ ≤ AdvDDH
G, A1

(λ). (4.12)

If Z = gz, the output of A1 looks like that of game i − 1, otherwise (for Z = gxy) it looks

like that of game i. Any successful distinguisher between those games can thus be used to break

DDH. Here we call A’s output b′′ to avoid notational conflict.
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A1 playing ExpDDH-b
G, A1

(λ):
receive (g, X, Y, Z)
for j ∈ [µ] \ {i + 1} do

αj
$←− Zp

gj ← gαj

gi+1 ← X

k $←− {0, 1}µ

b′′ ← ALRb(G, g, g1, . . . , gµ)
return b′′

LRb(ψi,b′) :

r, ri+2, . . . , rµ, d, e $←− Zp

Ŷ← gd · Ye

Ẑ← Xd · Ze

g0 ← ∏i∈[µ](g
ri
i )
−ki

cb ← (Ŷrα1 , . . . , Ŷrαi , Ẑr, gri+2
i+2 , . . . , gm · g0)

return cb

Figure 4.16: Description of reduction A1 used to prove Eqn. 4.12. A1 receives a DDH challenge (g, X, Y, Z) where
X = gx, Y = gy and either Z = gxy or Z = gz. A1 runsA and needs to create an environment ExpIND-KDM-CPA-b

Σ′BHHO, A
that mimics the hop between Gi−1 and Gi (for i ∈ [µ− 1]).

Finally, only one fresh random exponent is used for each ciphertext in game µ− 1, meaning

the ciphertext is (gr
1, . . . , gr

µ, gm · (∏i∈[µ] g−rki
i )). This output now looks like that of the public key

BHHO cryptosystem with message space {g0, g1}.

Gµ−1 : We now boundA’s advantage in game Gµ−1 by that of an adversaryA2 playing against

the PKE version of the IND-KDM-CPA game, and the reduction is detailed in Fig. 4.17. Since the

KDM functions act differently for our scheme compared to the original scheme, the reduction A2

needs to convert A’s KDM queries, which take the form (i, b′), to a vector u and a group element

v that it can send to its own KDM left-or-right oracle. This mapping is straightforward for queries

of the form (i, b′): if b′ = 0 then A2 selects u ← ei and sets v = 1 (meaning that A just wants the

encryption of ki) and if b′ = 1 then A2 sets u← −ei and v = g (since ki ⊕ 1 = 1− ki, this invokes

a multiplication of g−ki by g).

Again, we call A’s output b′′ to avoid notational conflict. Since the previous game hops

collapsed the randomness, these replies give a perfect simulation of the SKE version of the

IND-KDM-CPA game in Gµ−1 to give the following:

Adv[Gµ−1](A) ≤ AdvIND-KDM-CPA[PKE,ΨPKE]
ΠBHHO, A2

(λ). (4.13)

A2 playing ExpIND-KDM-CPA[PKE,ΨPKE]-b
ΠBHHO, A2

(λ):
receive (pk, pp)
b′′ ← ALRb(pp)
return b′′

LRb(ψi,b′) :
u← (−1)b′ei
v← gb′

call cb ← LRb(u, v)
return cb

Figure 4.17: Description of reduction A2 used to prove Eqn. 4.13. A2 runs A and needs to create an environment
ExpIND-KDM-CPA-b

ΣBHHO, A that mimics the game Gµ−1.
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The full scheme ΣBHHO. Finally, we assemble the SKE scheme ΣBHHO from t instances of Σ′BHHO

that use the same public parameters pp and the same key k. A ciphertext under ΣBHHO is a matrix

from Gt×(µ+1) where each row is an instance of Σ′BHHO (using pp and key k). To encrypt a message

m ∈ {0, 1}t under key k we encrypt mi in row i (while picking fresh randomness rj, j ∈ [µ] for

each row). Decryption also works row-wise.

For the RKA[Φ] transformer we apply FRKA[Φ] to each row. The class of KDM functions Ψ′SKE

changes to

ΨSKE := {ψi,∆ : {0, 1}µ → {0, 1}t, k 7→ (ki1 ⊕ ∆1, . . . , kit ⊕ ∆t) : i ∈ [µ]t, ∆ ∈ {0, 1}t}

meaning that each bit of the message can be an arbitrarily picked key bit. Since the RKA trans-

former works row-wise it is easy to check that the indistinguishability result from Lemma 4.4 and

the proof of IND-KDM-CPA security carries over to the full scheme ΣBHHO. Finally, by Thm. 4.1,

we get:

Theorem 4.6. The SKE scheme ΣBHHO is RKA-KDM[Φ, ΨSKE] secure (for Φ and Ψ as defined above in

this section) if DDH is hard over the underlying group G.

4.4.4.2 Brakerski-Goldwasser [74]

We now move our attention to the encryption scheme of Brakerski and Goldwasser [74], modified

to the symmetric setting. The KDM security of the original (public key) scheme relies on the

hardness of deciding quadratic residuosity (see Section 2.6.1) in the group Z∗N, for Blum integer

N = p · q. To construct our SKE scheme ΣBG so that it is resilient against related-key attacks, we

additionally have to stipulate that DDH is hard over the subgroup of quadratic residues QRN. We

achieve security against the same class of KDM functions as for ΣBHHO from Section 4.4.4.1. In the

published paper that resulted from the work in this chapter [68], the novelty in this instantion was

the KDM transformer, so now the novelty compared to the BHHO construction is the different

hardness assumption.

The SKE scheme Σ′BG is detailed in Fig. 4.18, and we define the scheme for messages m ∈ {0, 1}

and ciphertext space Z
µ+1
N . We use µ(λ) for the length of the Blum integer since the IND-CPA

security of Brakerski and Goldwasser’s original scheme requires that N is substantially shorter

than the number of components/key length µ, e.g., µ(λ) = λ/2. Full details of this constraint

can be found in [[74], Theorem 6.1]. Brakerski and Goldwasser show that KDM security of their

scheme holds for µ = log N + ω(log λ) where λ = log N, and if we assume that for 128-bit
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Σ′BG.Pg(λ) :

N $←− Blum[µ(λ)]

g1, . . . , gµ
$←− QRN

pp← (N, g1, . . . , gµ)
return pp

Σ′BG.Kg(pp) :

k $←− {0, 1}µ

return k

Σ′BG.E(m, k) :

r1, . . . , rµ
$←− [N2]

g0 ← ∏i∈[µ](g
ri
i )
−ki

c← (gr1
1 , . . . , grµ

µ , (−1)m · g0)
return c

Σ′BG.D(c, k) :
(x1, . . . , xµ, y)← c
m̃← y ·∏i∈[µ] xki

i
if m̃ = 1 then

return 0
if m̃ = −1 then

return 1
else

return ⊥

Figure 4.18: Symmetric encryption scheme Σ′BG forM = {0, 1}.

security we desire Blum integers of size 3072 bits then µ ≥ 3072 which is considerably higher

than the BHHO scheme.

The construction Σ′BG bears many similarities to Σ′BHHO, our modified version of BHHO’s

scheme: the parameter generation selects µ group elements that will be used to mask the ran-

domness used in encryption, and the encryption algorithms use µ random elements instead of

just one random element in the original schemes. In Σ′BG the message is represented as a power

of (−1) meaning that the decryption algorithm follows a different output procedure.

The RKA[Φ] transformer. The RKA[Φ] transformer FRKA[Φ] for Σ′BG works exactly like the

RKA[Φ] transformer for Σ′BHHO from Section 4.4.4.1, i.e., Φ allows for transformations of the secret

key under XOR. However there is a very small sampling error since the random elements used

in encryption are selected from [N2], and [N2] mod ϕE(N)
4 6= [−N2] mod ϕE(N)

4 . This means that in

the components affected by the RKA function the ‘random’ value is very slightly more likely to

be at the latter end of the range {1, . . . , ϕE(N)
4 } and in the unaffected components the randomness

is more likely to be a smaller value in this range. This behaviour was observed by Cramer and

Shoup [96]. Analogously to Lemma 4.4 we have:

Lemma 4.7. FRKA[Φ] is an RKA[Φ] transformer for Σ′BG in the sense of Def. 4.4.

KDM security of Σ′BG. The argument for IND-KDM-CPA security of Σ′BG is very similar to the

argument used for Σ′BHHO in the previous section; we state the following lemma and remove the

scheme-specific KDM function classes for ease of exposition.
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Lemma 4.8. The SKE scheme Σ′BG is IND-KDM-CPA secure if QR is hard over the underlying group

Z∗N and DDH is hard over the subgroup of quadratic residues QRN. More formally the advantage of an

adversary A against the IND-KDM-CPA security of Σ′BG is

AdvIND-KDM-CPA[SKE]
Σ′BG, A ≤ (µ− 1) ·AdvDDH

QRN, A1
(λ) + AdvIND-KDM-CPA[PKE]

ΠBG, A2
(λ) (4.14)

where A1 and A2 have similar resources to A, and A2 is playing against the PKE version of the

IND-KDM-CPA game.

Proof: This proof is analogous to the IND-KDM-CPA proof for Σ′BHHO (see Lemma 4.5). We first

collapse the randomness to one random exponent per ciphertext, relying on the hardness of DDH

over QRN: this reduction is very similar to Fig. 4.16, sampling from QRN for generators and

[N2] for exponents rather than G and Zp. Subsequently we invoke the IND-KDM-CPA security

of Brakerski and Goldwasser’s original scheme, however we again need to take into account

the discrepancy between the format of the KDM queries in our SKE scenario compared to the

PKE setting of the original paper. When the SKE adversary against Σ′BG sends query (i, b′), the

reduction (denoted A2 for the BHHO scheme in Fig. 4.17) needs to compute u ← (−1)b′ei and

v← (−1)b′ to form a query (u, v) that it can send to its own LR oracle. Note that KDM queries that

we call (u, v) (to follow the BHHO notation) are denoted by (a, a0) in Brakerski and Goldwasser’s

paper.

The full scheme ΣBG. Analogously to the setting for BHHO (Section 4.4.4.1), we can canonically

construct the full scheme ΣBG for message space {0, 1}t from t instances of Σ′BG using the same

public parameters and the same key. The class of RKA functions remains the same, while the

class of KDM functions automatically extends from Ψ′ to

Ψ := {ψi,∆ : {0, 1}µ → {0, 1}t, k 7→ (ki1 ⊕ ∆1, . . . , kit ⊕ ∆t) : i ∈ [µ]t, ∆ ∈ {0, 1}t}

Since we can canonically transfer Lemmas 4.7 and 4.8 from Σ′BG to ΣBG by Thm 4.1 we get the

following theorem.

Theorem 4.9. The SKE scheme ΣBG is RKA-KDM[Φ, Ψ] secure (for Φ and Ψ as defined above in this

section) if QR is hard in the underlying group Z∗N and DDH is hard over the subgroup of quadratic

residues QRN.
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4.4.4.3 Bellare et al. [39]

Since Applebaum’s work on KDM amplification [13], it is known that projection-KDM security

implies bounded-KDM security. Projection-KDM security allows for KDM functions where each

output bit depends only on one input bit (key bit). Bounded-KDM security means that the class

of KDM functions is the set of all functions that can be represented by a circuit of bounded size

L. We refer to this function class as Ψbnd(L) from now on. To our knowledge, currently the most

efficient way to construct a bounded-KDM-secure scheme from a projection-KDM-secure one

is the approach of Bellare, Hoang and Rogaway [39] (henceforth BHR). In this section we ob-

serve that their construction also maintains RKA security in our sense. Thus, we can plug all

of our projection-KDM-secure schemes (i.e., ΣBG, ΣACPS and ΣBHHO) into their framework to get

RKA-bounded-KDM-secure schemes. Obviously, this result holds for any projection-KDM-secure

scheme that is RKA secure (with a suitable transformer in our sense).

(Projective) garbling schemes. What follows is a brief introduction to garbling schemes estab-

lished by [39]. A garbling scheme is a tuple of algorithms

(GCgarble,GCencode,GCdecode,GCeval).

For simplicity we omit the additional evaluation function from [39] and restrict to inputs of length

λ here. The algorithm GCgarble is probabilistic while the remaining algorithms are deterministic.

Given an encoding of the security parameter and a function f , GCgarble(λ, f ) outputs the descrip-

tion of a garbled circuit (F, e, d). Here, F is a function mapping garbled inputs to garbled outputs.

For example, F could be a circuit in terms of gates and wires together with a garbled table for

each gate. The outputs e and d contain information to encode and decode the input and output

of F respectively. We say that a garbling scheme is correct if

GCdecode(d,GCeval(F,GCencode(m, e))) = f (m)

for all functions f (from a certain class), inputs m ∈ {0, 1}λ and descriptions (F, e, d) ←

GCgarble(λ, f ) of garbled circuits for f .

For our application we need so-called projective garbling schemes. Basically, a garbling scheme

is projective if for all x := GCencode(e, m) and x′ := GCencode(e, m′), we have |xi| = |x′i| for i ∈ [λ]

and xi = x′i for i ∈ [λ] with mi = m′i. One well-known way to construct a projective garbling

scheme is to assign a pair of keys to each wire corresponding to low and high voltage (0/1) respec-
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tively. Then e is a tuple of pairs of keys and GCencode(m, e) picks the keys from e corresponding to

the bits of m.

Furthermore, we say that a garbling scheme is privacy preserving if for any two (adversarially

chosen) functions f0, f1 with the same circuit size and inputs x0, x1 of same length with f0(x0) =

f1(x1), no adversary can distinguish

(F0,GCencode(e0, x0), d0) from (F1,GCencode(e1, x1), d1)

where (Fb, eb, db) ← GCgarble(λ, fb), b ∈ {0, 1}. We refer to the full version of Bellare et al.’s pa-

per [40] for a more detailed definition.

The construction of BHR. The construction creates a symmetric KDM[Ψbnd(L)]-secure en-

cryption scheme ΣBHR = (Pg,Kg,E,D) from any projection-KDM-secure encryption scheme

Σ′ = (Pg′,Kg′,E′,D′) and any privacy preserving projective garbling scheme (GCgarble, GCencode,

GCdecode, GCeval) as follows.

• Pg(λ) returns Pg′(λ).

• Kg(pp) returns Kg′(pp).

• Ek(m) first generates a garbled circuit for the identity function IDλ on bitstrings of length

λ: (F, e, d) ← GCgarble(λ, IDλ). It then encodes the message x ← GCencode(e, m) (w.l.o.g. x ∈

{0, 1}λ×λ). Finally, it outputs the ciphertext c← (F, d,E′k(xi)).

• Dk((F, d, (ci)i∈[λ])) first decrypts the keys for the input wires xi ← D′k(ci) and then evaluates

the circuit to compute and output the message m← GCdecode(d,GCeval(F, x)).

An RKA[Φ] transformer for ΣBHR. Given an RKA[Φ] transformer F ′RKA[Φ] for Σ′, we can con-

struct an RKA[Φ] transformer FRKA[Φ] for ΣBHR (note that we maintain the class of RKA func-

tions). Let c = (F, d, (ci)i∈[λ]) be an honestly generated ciphertext and ϕ ∈ Φ be an RKA function.

We define FRKA[Φ](c) := (F, d, (F ′RKA[Φ](ci))i∈[λ]). A straightforward hybrid argument over the ci,

based on the indistinguishability of F ′RKA[Φ], shows the indistinguishability of FRKA[Φ](c) in the

sense of Def. 4.4.

Theorem 4.10. Let Σ′ be an RKA-KDM[Φ, Ψ]-secure SKE scheme with an indistinguishable RKA[Φ]

transformer FRKA[Φ]. If Ψ covers projections, then ΣBHR, as defined above, is an RKA-KDM[Φ, Ψbnd(L)]-

secure SKE for any arbitrary but fixed bound L.
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Proof: Since we are using KDM-secure schemes, the proof simply involves invoking a suitable

RKA transformer. Our first game is the real side the original RKA-KDM[Φ, Ψ] experiment (see

Def. 4.3). In the next game, we no longer use the secret key itself to answer the RKA part of

queries. More concretely, for a given RKA-KDM query (ϕ, ψ), we compute c ← Ek(ψ(k)) and

output FRKA[Φ](ϕ, c) instead of directly returning Eϕ(k)(ψ(k)). The indistinguishability of this

game hop follows directly from the indistinguishability of the RKA[Φ] transformer. Finally, we

can simply follow the strategy from [40], Theorem 15, to compute c. This strategy requires that

the garbling scheme used to construct ΣBHR is privacy preserving and projective. We can then

hop to the fake side of the RKA-KDM[Φ, Ψ] experiment, again bounded by an adversary playing

the game against the RKA[Φ] transformer.

4.4.4.4 Malkin et al. [159]

We now turn our attention to the work of Malkin, Teranishi and Yung (henceforth MTY) [159],

who provide an efficient PKE scheme which is KDM secure with respect to functions computable

by polynomial-size modular arithmetic circuits (MACs). We present a symmetric version of their

scheme that is RKA-KDM[Φ, Ψ] with respect to the RKA function class of modular addition and

affine KDM functions. The security of the scheme relies on the DCR assumption, see Section 2.6.1

for details.

We consider MTY’s so-called Cascaded Paillier Elgamal scheme in the case where s = 2

(where s is the exponent of N) and d = 1 (the maximum degree of the polynomials used as KDM

queries) to reflect affine functions. In this case the scheme for messages m ∈ ZN and cipher-

text space (Z∗N2)
2 is detailed in Fig. 4.19. The element g is required to have full order ϕE(N)/4.

The decryption algorithm computes xky mod N2 = (1 + N)m and recovers m using the efficient

bijection described in the original paper, denoted here by bij.

In the original PKE scheme ΠMTY for s = 2 and d = 1, the secret key is chosen from a slightly

different range k $←− [2ξ · bN/4c] and the public key is gk mod N2. In the s = 2 and d = 1 case

their encryption algorithm picks two random elements r0, r1
$←− [bN/4c] rather than just one and

computes (g−r1 , g−r0 · gkr1 , (1 + N)m · gkr0).

We remark that the original paper [159] extends to a larger class of KDM functions (polyno-

mials of bounded degree), however it does not appear possible to construct an RKA transformer

for the larger class. The expanded d-cascaded Paillier ElGamal encryption of m is

c = (cd+1, cd, . . . , c0) =
(
g−rd , g−rd−1 · gkrd , g−rd−2 · gkrd−1 , . . . , (1 + N)m · gkr0

)
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ΣMTY.Pg(λ) :

p, q $←− SafePrimes[bλ/2c]
N← p · q
do

g $←− CR[N2]
while ord(g) 6= ϕE(N)/4
pp← (N, g)
return pp

ΣMTY.Kg(pp) :

k $←− [bN/4c]
return k

ΣMTY.E(m, k) :

r $←− [bN/4c]
x← g−r mod N2

y← (1 + N)mgrk mod N2

c← (x, y)
return c

ΣMTY.D(c, k) :
(x, y)← c
m̃← xky mod N2

m← bij(m̃)
return m

Figure 4.19: Symmetric encryption scheme ΣMTY

and decryption calculates c0ck
1ck2

2 . . . ckd+1

d+1 .

The RKA[Φ] transformer. For the concrete class of RKA functions

Φ := {ϕ∆(k) := k + ∆ mod ϕE(N)/4 : ∆ ∈ Z}

we find an RKA[Φ] transformer FRKA[Φ] for ΣMTY as follows: FRKA[Φ](ϕ∆, c) parses c as (x, y) and

computes (x, y · x−∆ mod N2).

Lemma 4.11. FRKA[Φ] is an RKA[Φ] transformer in the sense of Def. 4.4.

Proof: Observe that

(x, y · x−∆) = (g−r, (1 + N)mgrkgr∆) = (g−r, (1 + N)mgr(k+∆)).

Hence, given a valid encryption of m, the output of the transformer is the encryption of m under

key k + ∆ mod ϕE(N)/4 and randomness r. Note that the adversary does not know ϕE(N) and

so cannot compute this function class directly.

The KDM security of our variant of the MTY scheme follows from the analysis in [159]; we

provide a formal proof in our notation.

Interactive Vector Lemmas. In a similar manner to Section 4.4.4.2 we utilise the interactive vec-

tor lemmas of [74, 159], in particular the DCR case for s = 2 from Section 6.1 of the Malkin et al.

paper [159].

Definition 4.6. The advantage of an adversary A in breaking Interactive Vector Game IVi for i = 1, 2 is
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defined by

AdvIVi
A (λ)

de f
=

∣∣∣∣ ∑
b∈{0,1}

(−1)b · Pr
[
ExpIVi-b

A (λ) = 1
]∣∣∣∣

where ExpIV1-b
A (λ) is given in Fig. 4.20 and ExpIV2-b

A (λ) is given in Fig. 4.21.

ExpIV1-b
A (λ) :

p, q $←− SafePrimes[bλ/2c]
N← p · q
g $←− CR[N2]
b′ ← ALRb(N, g)
return b′

LRb(δ) :
if δ 6∈ ZN then

return  
r $←− [bN/4c]
if b = 1 then

u← (1 + N)δgr mod N2

if b = 0 then
u← gr mod N2

return u

Figure 4.20: Interactive Vector Game IV1

ExpIV2-b
A (λ) :

p, q $←− SafePrimes[bλ/2c]
N← p · q
g, h $←− CR[N2]
b′ ← ALRb(N, g, h)
return b′

LRb(δ, δ) :
if δ or δ 6∈ ZN then

return  
r $←− [bN/4c]
if b = 1 then

u← (1 + N)δgr mod N2

v← (1 + N)δhr mod N2

if b = 0 then
u← gr mod N2

v← hr mod N2

return (u, v)

Figure 4.21: Interactive Vector Game IV2.

By Lemma 1 of [159], the advantage of any adversary guessing b in IVk for k = 1, 2 is negligible

under the DCR assumption. Note that in IV1 in the original paper [159], g is picked from {t4N mod

N2|t ∈ ZN2} rather than from CR[N2], which could lead to a bad event if g does not have the

correct order. We observe that this only occurs with negligible probability.

KDM security of ΣMTY. We now prove our modified scheme ΣMTY to be KDM secure with re-

spect to affine functions. A reduction to the DCR assumption using the interactive vector games

is preferable to a reduction to the original scheme, as we have modified the cardinality of ci-

phertexts and the randomness used in the original scheme ΠMTY. We define affine functions as

follows:

Ψ := {ψα,β : ZbN/4c → ZN, k 7→ αk + β mod N : α, β ∈ ZN}
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which gives rise to the following lemma:

Lemma 4.12. The SKE scheme ΣMTY is IND-KDM-CPA[Ψ] secure for affine functions Ψ if DCR is hard

in the underlying group Z∗N2 . More formally there exist adversaries A1 and A2 such that

AdvIND-KDM-CPA[Ψ]
ΣMTY , A ≤ AdvIV1

A1
(λ) + AdvIV2

A2
(λ). (4.15)

Proof: In contrast to our strategy in Section 4.4.4.1 we will define our base game G0 as the ad-

versary playing against the b = 1 or ‘real’ side of the security experiment. The proof proceeds in

two stages. Firstly we use IV1 to split the key-dependent encryption Ek(αk + β) across the two

ciphertext components, the second will drop the key-dependent component α and replace β by

the dummy message m0 using IV2.

G0 : In G0 adversary A is playing against the real side of the IND-KDM-CPA security experi-

ment ExpIND-KDM-CPA[Ψ]-1
ΣMTY , A , so A receives Ek(αk + β) where α, β ∈ ZN.

G1 : In G1 we replace the encryption of the key-dependent message, i.e. Ek(αk + β) =

(g−r, grk(1 + N)αk+β) by (g−r(1 + N)α, grk(1 + N)β), a value that will still decrypt to αk + β.

This is a similar approach to MTY’s ‘fake mode’ of encryption, and is a hop that should go

through even when the adversary is given the key. Reduction A1, detailed in Fig. 4.22, picks

a key k $←− [bN/4c]. For each query ψα,β by the adversary, A1 sends −α to IV1 and receives the

response u ← gr(1 + N)−αb where b ∈ {0, 1} and g ∈ CR[N2] are picked uniformly by IV1 for all

queries and r is some uniform randomness that is fresh for each query. A1 sends the ciphertext

c ← (u−1, uk · (1 + N)αk+β;) to A. For b = 0 this is
(
g−r, grk(1 + N)αk+β

)
which is a response to

the KDM query ψα,β in the real side of the IND-KDM-CPA game (so the same as G0). For b = 1 the

output is
(
g−r(1 + N)a, grk(1 + N)β

)
as desired.

∣∣∣Pr
[
G0
A = 1

]
− Pr

[
G1
A = 1

]∣∣∣ ≤ AdvIV1
A1

(λ). (4.16)

A1 playing ExpIV1-b
A1

(λ):
receive (N, g)

k $←− [bN/4c]
b′ ← ALR1(N, g)
return b′

LR1(ψα,β) :
call u← IV1.LRb(−α)
cb ← (u−1, uk · (1 + N)αk+β)
return cb

Figure 4.22: Description of reduction A1 used to prove Eqn. 4.16. A1 runs A and needs to create an environment
ExpIND-KDM-CPA-1

ΣMTY , A that mimics the hop between G0 and G1.

Note that sinceA1 simulates ExpIND-KDM-CPA-1
ΣMTY , A forA, reductionA1 needs to simulate the b = 1
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case (i.e. key-dependent encryptions) of A’s LR oracle in the IND-KDM-CPA game that A plays

against. A1’s own LR oracle is hardwired with the challenge bit b in the IV1 game, so we write

IV1.LRb to emphasise that this outcome depends on b.

G2 : We now use IV2 to remove the key-dependent component α altogether and replace β by

m0, meaning that in this game the adversary is playing against ExpIND-KDM-CPA[Ψ]-0
ΣMTY , A . When A

queries an encryption of ψα,β, the adversary A2 playing IV2 sends (−α, β−m0) to its IV2 oracle

(A2 picks m0 randomly from ZN at the start of the game). It receives the response (u, v) ←(
gr(1 + N)−αb, hr(1 + N)b(β−m0)

)
where b ∈ {0, 1}, g, h ∈ CR[N2] are picked uniformly by IV2 for

all queries and r is some uniform randomness that is fresh for each query. Since h is of full order

ϕE(N)/4 there is some k ∈ [bN/4c] such that h = gk.5 A2 sends the ciphertext (u−1, v(1 + N)m0)

to the adversary. For b = 1 this is
(
g−r(1 + N)α, hr(1 + N)β

)
which is the ciphertext in G1, and for

b = 0 this is
(
g−r, hr(1+N)m0

)
, which is a legitimate encryption of m0. ReductionA2 is described

in Fig. 4.23 and yields the following equation:

∣∣∣Pr
[
G1
A = 1

]
− Pr

[
G2
A = 1

]∣∣∣ ≤ AdvIV2
A2

(λ). (4.17)

A2 playing ExpIV2-b
A2

(λ):
receive (N, g, h)

m0
$←− ZN

b′ ← ALRb(N, g)
return b′

LRb(ψα,β) :
call (u, v)← IV2.LRb(−α, β−m0)
cb ← (u−1, v(1 + N)m0)
return cb

Figure 4.23: Description of reduction A2 used to prove Eqn. 4.17. A2 runs A and needs to create an environment
ExpIND-KDM-CPA-b

ΣMTY , A that mimics the hop between G1 and G2.

Finally, by Lemmas 4.11 and 4.12, and Thm. 4.1, we obtain

Theorem 4.13. The scheme ΣMTY is RKA-KDM[Φ, Ψ] secure (for Φ and Ψ as defined above in this

section) if the DCR assumption holds in Z∗N2 .

4.4.4.5 Applebaum et al. [16]

The majority of this section was written by co-author Dennis Hofheinz.

In this section, we present a secret key version of the PKE scheme of Applebaum et al. [16]

and prove it RKA-KDM secure. For compatibility with Applebaum et al.’s application, however,

we slightly change the space of secret keys from Z
µ
p to {0, 1}µ. Our RKA and KDM transformers

5There is a small sampling error here, picking the key from [bN/4c] rather than ϕE(N)/4.
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allow encryptions under keys k⊕ ∆ (for arbitrary ∆ ∈ {0, 1}µ) of arbitrary components of the

secret key. Security is based on the LWE assumption formulated by Regev [?] .

For ease of exposition, we do not detail the choices of the following parameters—these can

occur as in Applebaum et al. [16] (with adaptations as in Akavia et al. [8] due to the different

choice of secret key). Let q be a polynomial in the security parameter λ, and let µ > n be integers

(that may also depend on λ). By χ, we denote a (discretised Gaussian) error distribution with

suitable parameters over Zq.

Applebaum et al. [16] show that the LWE assumption over Zq = Zp2 and with s ← Zn
p is

equivalent to Regev’s Learning With Errors (LWE) assumption (for q = p). Furthermore, Akavia

et al. [8] show that the LWE assumption with s ← {0, 1}n is implied by the LWE assumption as

above (for different parameters of n, µ). In the following, we will consider q = p2 and s ∈ {0, 1}n.

Furthermore, for x ∈ R, we write dxcp := dx + 1/2e mod p for the nearest integer to x modulo p.

The scheme Σ′ACPS (with m ∈ Zp and ciphertext space Z
µ
q ×Zq) is defined in Fig. 4.24.

Σ′ACPS.Pg(λ) :
pp← ⊥
return pp

Σ′ACPS.Kg(pp) :

s $←− {0, 1}µ

k← s
return k

Σ′ACPS.E(m, k) :

A $←− Z
n×µ
q

r $←− χµ

x $←− χµ

c← (A · r,−(sT ·A + xT) · r + p ·m)
return c

Σ′ACPS.D(c, k) :
(y, z)← c
m← d(〈s; y〉+ z)/pcp
return m

Figure 4.24: Symmetric encryption scheme Σ′ACPS

Compared to the PKE scheme of Applebaum et al. [16], we choose s slightly differently, and

also choose different A, x upon each encryption. We note that correctness holds only with over-

whelming probability over the choice of r and x. In particular, |〈x; r〉| < p/2 with overwhelming

probability.

The RKA[Φ] transformer. For the concrete class of RKA functions

Φ := {ϕ∆ : {0, 1}µ → {0, 1}µ, k 7→ k⊕ ∆ : ∆ ∈ {0, 1}µ},
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we find an RKA[Φ] transformer FRKA[Φ] for Σ′ACPS as follows: Given a ciphertext c = (y, z) and a

function ϕ∆, it outputs

c′ := (y′, z′) with y′i = (−1)∆i yi and z′ = z + ∑
i∈[µ]

∆iyi

As with the BHHO scheme, a quick calculation shows that c′ is a perfectly distributed ciphertext

of m under k⊕ ∆. Thus:

Lemma 4.14. FRKA[Φ] is an RKA[Φ] transformer in the sense of Def. 4.4.

KDM security of Σ′ACPS.

Lemma 4.15. The SKE scheme Σ′ACPS is IND-KDM-CPA secure if the LWE assumption holds for the

respective parameters.

Proof:[Sketch] Our scheme is essentially the same as that of Applebaum et al. [16], only with

a different distribution of s (for which, by Akavia et al. [8], the LWE assumption is implied by

the “regular” LWE assumption). Hence, we only provide a short overview over the proof of

Applebaum et al. [16].

First, we substitute all vectors sTA+ xT used to handle encryption queries with independently

and uniformly random vectors uT. This step can be justified by applying the LWE assumption.

Next, we observe that now encryption has become lossy, in the sense that ciphertexts are sta-

tistically (almost) independent of the underlying message. Indeed, by our choice of µ > n, given

Ar, the vector r still has significant min-entropy. Thus, the value 〈u; r〉 used to pad the encrypted

message looks (almost) uniformly and independently distributed. At this point, A’s advantage

to distinguish real from fake encryptions is statistically close to zero, and IND-KDM-CPA security

follows.

The full scheme ΣACPS. As in the BHHO setting, we can construct the full scheme ΣACPS with

message space Z
µ
p from µ instances of Σ′ACPS that use the same public parameters and key in a

straightforward manner.

Likewise, by transferring Lemmas 4.14 and 4.15 from Σ′ACPS to ΣACPS and by Thm. 4.1, we get

Theorem 4.16. The SKE scheme ΣACPS is RKA-KDM[Φ, Ψ] secure (for Φ as defined above in this section

and Ψ from the full BHHO scheme) if the LWE assumption holds for the respective parameters.
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4.5 Conclusions

This chapter has introduced the notion of RKA-KDM security for symmetric encryption, and

provided instantiations based on a number of existing KDM-secure schemes. While the work

of Applebaum introduced the joint notion, the work presented in this chapter gives a generic

framework for construction of schemes secure under the joint notion, and this approach has the

potential to incorporate further security notions. This chapter identifies an issue with the pub-

lished work on which this chapter is based, and gives a more restrictive and less modular generic

framework. The issue of modularity could be recovered by casting the definition of KDM security

in the ‘transformer’ approach.

The instantiations are straightforward and require the isolation of key-homomorphic prop-

erties of the underlying KDM-secure schemes, allowing simulation of encryptions under related

keys.

In terms of open problems that stem from this work, the modular nature of the framework

suggests that it is possible to add further primitives to provide schemes that are secure under

three or more notions concurrently. Related-randomness security [168] appears a good candidate

as it is heavily linked to RKA security, and the rich field of work in selective-opening security also

follows the theme of being a non-standard notion however the multiple definitions and contrived

constructions represent a significant barrier to progress in our setting. Extensions to chosen-

ciphertext security involve heavy machinery such as NIZK proofs, and candidate schemes are

not obvious.
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